1. Giovannetti, V., S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: Beating the standard quantum limit," Science, Vol. 306, 1330, 2004.
doi:10.1126/science.1104149 Google Scholar
2. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Rev. Mod. Phys., Vol. 89, 035002, 2017.
doi:10.1103/RevModPhys.89.035002 Google Scholar
3. Schirhag, R., K. Chang, M. Loretz, and C. L. Degen, "Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology," Annu. Rev. Phys. Chem., Vol. 65, 83, 2014.
doi:10.1146/annurev-physchem-040513-103659 Google Scholar
4. Zaiser, S., T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S. Wagner, V. Bergholm, T. Schulte-Herbruggen, P. Neumann, and J. Wrachtr, "Enhancing quantum sensing sensitivity by a quantum memory," Nat. Commun., Vol. 7, 12279, 2016.
doi:10.1038/ncomms12279 Google Scholar
5. Pirandola, S., B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics, Vol. 12, 724, 2018.
doi:10.1038/s41566-018-0301-6 Google Scholar
6. Ajoy, A., Y.-X. Liu, K. Saha, L. Marseglia, J.-C. Jaskula, U. Bissbort, and P. Cappellaro, "Quantum interpolation for high-resolution sensing," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 2149, 2017.
doi:10.1073/pnas.1610835114 Google Scholar
7. Bonato, C., M. S. Blok, H. T. Dinani, D. W. Berry, M. L. Markham, D. J. Twitchen, and R. Hanson, "Optimized quantum sensing with a single electron spin using real-time adaptive measurements," Nat. Nanotechnol., Vol. 11, 247, 2016.
doi:10.1038/nnano.2015.261 Google Scholar
8. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys., Vol. 78, 455, 2006.
doi:10.1103/RevModPhys.78.455 Google Scholar
9. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, 781, 2012.
doi:10.1007/s00339-012-7345-0 Google Scholar
10. Fleury, R. and A. Alu, "Manipulation of electron flow using near-zero index semiconductor metamaterials," Phys. Rev. B, Vol. 90, 035138, 2014.
doi:10.1103/PhysRevB.90.035138 Google Scholar
11. Valagiannopoulos, C., "Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy," Quantum Eng., Vol. 2, e52, 2020.
doi:10.1002/que2.52 Google Scholar
12. Valagiannopoulos, C., "Quantum Fabry-Perot resonator: Extreme angular selectivity in matterwave tunneling," Phys. Rev. Appl., Vol. 12, 054042, 2019.
doi:10.1103/PhysRevApplied.12.054042 Google Scholar
13. Valagiannopoulos, C., "Optimally sharp energy filtering of quantum particles via homogeneous planar inclusions," Sci. Rep., Vol. 10, 816, 2020.
doi:10.1038/s41598-019-56793-1 Google Scholar
14. Ogawana, T. and H. Sakaguchi, "Transmission coefficient from generalized Cantor-like potentials and its multifractality," Phys. Rev. E, Vol. 97, 012205, 2018.
doi:10.1103/PhysRevE.97.012205 Google Scholar
15. Valagiannopoulos, C., "Predicting the quantum texture from transmission probabilities," J. Appl. Phys., Vol. 127, 174301, 2020.
doi:10.1063/5.0006780 Google Scholar
16. Christesen, J. D., C. W. Pinion, D. J. Hill, S. Kim, and J. F. Cahoon, "Chemically engraving semiconductor nanowires: Using three-dimensional nanoscale morphology to encode functionality from the bottom up," J. Phys. Chem. Lett., Vol. 7, 685, 2016.
doi:10.1021/acs.jpclett.5b02444 Google Scholar
17. Gazibegovic, S., et al., "Epitaxy of advanced nanowire quantum devices," Nature, Vol. 548, 434, 2017.
doi:10.1038/nature23468 Google Scholar
18. Hausmann, B. J. M., M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmerd, and M. Loncar, "Fabrication of diamond nanowires for quantum information processing applications," Diam. Relat. Mater., Vol. 19, 621, 2010.
doi:10.1016/j.diamond.2010.01.011 Google Scholar
19. Tom, R. T., A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, "Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties," Langmuir, Vol. 19, 3439, 2003.
doi:10.1021/la0266435 Google Scholar
20. Xu, L., M. Sun, W. Ma, H. Kuang, and C. Xu, "Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications," Materials Today, Vol. 19, 595, 2016.
doi:10.1016/j.mattod.2016.05.015 Google Scholar
21. Ko, H.-W., M.-H. Chi, C.-W. Chang, C.-W. Chu, K.-H. Luo, and J.-T. Chen, "Fabrication of coreshell polymer nanospheres in the nanopores of anodic Aluminum oxide templates using polymer blend solutions," ACS Macro Letters, Vol. 4, 717, 2015.
doi:10.1021/acsmacrolett.5b00297 Google Scholar
22. Lee, J. Y. and R.-K. Lee, "Exploring matter wave scattering by means of the phase diagram," EPL, Vol. 124, 30006, 2018.
doi:10.1209/0295-5075/124/30006 Google Scholar
23. Valagiannopoulos, C., "Maximal quantum scattering by homogeneous spherical inclusions," Phys. Rev. B, Vol. 100, 035308, 2019.
doi:10.1103/PhysRevB.100.035308 Google Scholar
24. Lee, J. Y., A. E. Miroshnichenko, and R.-K. Lee, "Designing quantum resonant scatterers at subwavelength scale," Phys. Lett. A, Vol. 381, 2860, 2017.
doi:10.1016/j.physleta.2017.06.051 Google Scholar
25. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, 126806, 2012.
doi:10.1103/PhysRevLett.109.126806 Google Scholar
26. Valagiannopoulos, C., "Perfect quantum cloaking of tilted cylindrical nanocavities," Phys. Rev. B, Vol. 101, 195301, 2020.
doi:10.1103/PhysRevB.101.195301 Google Scholar
27. Valagiannopoulos, C., E. A. Marengo, A. G. Dimakis, and A. Alu, "Aharonov-Bohm-inspired tomographic imaging via compressive sensing," IET Microw. Antennas Propag., Vol. 12, 1890, 2018.
doi:10.1049/iet-map.2017.0609 Google Scholar
28. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, 045423, 2013.
doi:10.1103/PhysRevB.87.045423 Google Scholar
29. Valagiannopoulos, C., A. N. Askarpour, and A. Alu, "Aharonov-Bohm detection of two-dimensional magnetostatic cloaks," Phys. Rev. B, Vol. 92, 224414, 2015.
doi:10.1103/PhysRevB.92.224414 Google Scholar
30. Lee, J. Y. and R.-K. Lee, "Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks," Phys. Rev. B, Vol. 89, 155425, 2014.
doi:10.1103/PhysRevB.89.155425 Google Scholar
31. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, 201106(R), 2013.
doi:10.1103/PhysRevB.87.201106 Google Scholar
32. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
doi:10.1103/PhysRevLett.100.123002 Google Scholar
33. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, 220404, 2008.
doi:10.1103/PhysRevLett.101.220404 Google Scholar
34. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297, 2007.
doi:10.2528/PIER07041203 Google Scholar
35. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337 Google Scholar
36. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1, 2008.
doi:10.2528/PIER07092206 Google Scholar
37. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.
doi:10.1163/156939310791036331 Google Scholar
38. Trachanas, S., An Introduction to Quantum Physics: A First Course for Physicists, Chemists, Materials Scientists, and Engineers, John Wiley & Sons, 2018.
39. Griffiths, D. J., "Introduction to Quantum Mechanics," Pearson Prentice Hall, 2005. Google Scholar
40. Hodge, W. B., S. V. Migirditch, and W. C. Kerr, "Electron spin and probability current density in quantum mechanics," Am. J. Phys., Vol. 82, 681, 2014.
doi:10.1119/1.4868094 Google Scholar
41. Balanis, C. A., Advanced Engineering Electromagnetics, JohnWiley & Sons, 2012.
42. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, John Wiley & Sons, 2017.
doi:10.1002/9781119004639
43. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277, 2007.
doi:10.2528/PIER07030803 Google Scholar
44. Sheverdin, A. and C. Valagiannopoulos, "Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking," Phys. Rev. B, Vol. 99, 075305, 2019.
doi:10.1103/PhysRevB.99.075305 Google Scholar
45. Cohen-Tannoudji, C., B. Diu, and F. Laloe, Quantum Mechanics, John Wiley & Sons, 1992.
46. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983.
47. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137, 2007.
doi:10.2528/PIER07052502 Google Scholar
48. Mandilara, A., C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling," Phys. Rev. A, Vol. 99, 023849, 2019.
doi:10.1103/PhysRevA.99.023849 Google Scholar
49. Abrashuly, A. and C. Valagiannopoulos, "Limits for absorption and scattering by core-shell nanowires in the visible spectrum," Phys. Rev. Appl., Vol. 11, 014051, 2019.
doi:10.1103/PhysRevApplied.11.014051 Google Scholar
50. Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, 2009.
51. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257, 2010.
doi:10.1103/RevModPhys.82.2257 Google Scholar
52. Valagiannopoulos, C., "Steering of quantum signals along coupled paths of arbitrary curvature," J. Opt. Soc. Am. B, Vol. 38, 263, 2021.
doi:10.1364/JOSAB.404394 Google Scholar