Vol. 170
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-01-14
Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 170, 1-15, 2021
Abstract
Quantum interactions between a single particle and nanoinclusions of spherical or cylindrical shape are optimized to produce scattering lineshapes of high selectivity with respect to impinging energies, excitation directions and cavity sizes. The optimization uses a rigorous solution derived via electromagnetic scattering formalism while the adopted scheme rejects boundary extrema corresponding to resonances that occur outside of the permissible parametric domains. The reported effects may inspire experimental efforts towards designing quantum sensing systems employed in applications spanning from quantum switching and filtering to single-photon detection and quantum memory.
Citation
Constantinos Valagiannopoulos, "Designing Nanoinclusions for Quantum Sensing Based on Electromagnetic Scattering Formalism (Invited Paper)," Progress In Electromagnetics Research, Vol. 170, 1-15, 2021.
doi:10.2528/PIER20112306
References

1. Giovannetti, V., S. Lloyd, and L. Maccone, "Quantum-enhanced measurements: Beating the standard quantum limit," Science, Vol. 306, 1330, 2004.
doi:10.1126/science.1104149        Google Scholar

2. Degen, C. L., F. Reinhard, and P. Cappellaro, "Quantum sensing," Rev. Mod. Phys., Vol. 89, 035002, 2017.
doi:10.1103/RevModPhys.89.035002        Google Scholar

3. Schirhag, R., K. Chang, M. Loretz, and C. L. Degen, "Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology," Annu. Rev. Phys. Chem., Vol. 65, 83, 2014.
doi:10.1146/annurev-physchem-040513-103659        Google Scholar

4. Zaiser, S., T. Rendler, I. Jakobi, T. Wolf, S.-Y. Lee, S. Wagner, V. Bergholm, T. Schulte-Herbruggen, P. Neumann, and J. Wrachtr, "Enhancing quantum sensing sensitivity by a quantum memory," Nat. Commun., Vol. 7, 12279, 2016.
doi:10.1038/ncomms12279        Google Scholar

5. Pirandola, S., B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd, "Advances in photonic quantum sensing," Nat. Photonics, Vol. 12, 724, 2018.
doi:10.1038/s41566-018-0301-6        Google Scholar

6. Ajoy, A., Y.-X. Liu, K. Saha, L. Marseglia, J.-C. Jaskula, U. Bissbort, and P. Cappellaro, "Quantum interpolation for high-resolution sensing," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 2149, 2017.
doi:10.1073/pnas.1610835114        Google Scholar

7. Bonato, C., M. S. Blok, H. T. Dinani, D. W. Berry, M. L. Markham, D. J. Twitchen, and R. Hanson, "Optimized quantum sensing with a single electron spin using real-time adaptive measurements," Nat. Nanotechnol., Vol. 11, 247, 2016.
doi:10.1038/nnano.2015.261        Google Scholar

8. Istrate, E. and E. H. Sargent, "Photonic crystal heterostructures and interfaces," Rev. Mod. Phys., Vol. 78, 455, 2006.
doi:10.1103/RevModPhys.78.455        Google Scholar

9. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, 781, 2012.
doi:10.1007/s00339-012-7345-0        Google Scholar

10. Fleury, R. and A. Alu, "Manipulation of electron flow using near-zero index semiconductor metamaterials," Phys. Rev. B, Vol. 90, 035138, 2014.
doi:10.1103/PhysRevB.90.035138        Google Scholar

11. Valagiannopoulos, C., "Optimized quantum filtering of matter waves with respect to incidence direction and impinging energy," Quantum Eng., Vol. 2, e52, 2020.
doi:10.1002/que2.52        Google Scholar

12. Valagiannopoulos, C., "Quantum Fabry-Perot resonator: Extreme angular selectivity in matterwave tunneling," Phys. Rev. Appl., Vol. 12, 054042, 2019.
doi:10.1103/PhysRevApplied.12.054042        Google Scholar

13. Valagiannopoulos, C., "Optimally sharp energy filtering of quantum particles via homogeneous planar inclusions," Sci. Rep., Vol. 10, 816, 2020.
doi:10.1038/s41598-019-56793-1        Google Scholar

14. Ogawana, T. and H. Sakaguchi, "Transmission coefficient from generalized Cantor-like potentials and its multifractality," Phys. Rev. E, Vol. 97, 012205, 2018.
doi:10.1103/PhysRevE.97.012205        Google Scholar

15. Valagiannopoulos, C., "Predicting the quantum texture from transmission probabilities," J. Appl. Phys., Vol. 127, 174301, 2020.
doi:10.1063/5.0006780        Google Scholar

16. Christesen, J. D., C. W. Pinion, D. J. Hill, S. Kim, and J. F. Cahoon, "Chemically engraving semiconductor nanowires: Using three-dimensional nanoscale morphology to encode functionality from the bottom up," J. Phys. Chem. Lett., Vol. 7, 685, 2016.
doi:10.1021/acs.jpclett.5b02444        Google Scholar

17. Gazibegovic, S., et al., "Epitaxy of advanced nanowire quantum devices," Nature, Vol. 548, 434, 2017.
doi:10.1038/nature23468        Google Scholar

18. Hausmann, B. J. M., M. Khan, Y. Zhang, T. M. Babinec, K. Martinick, M. McCutcheon, P. R. Hemmerd, and M. Loncar, "Fabrication of diamond nanowires for quantum information processing applications," Diam. Relat. Mater., Vol. 19, 621, 2010.
doi:10.1016/j.diamond.2010.01.011        Google Scholar

19. Tom, R. T., A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan, and T. Pradeep, "Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core-shell nanoparticles: One-step synthesis, characterization, spectroscopy, and optical limiting properties," Langmuir, Vol. 19, 3439, 2003.
doi:10.1021/la0266435        Google Scholar

20. Xu, L., M. Sun, W. Ma, H. Kuang, and C. Xu, "Self-assembled nanoparticle dimers with contemporarily relevant properties and emerging applications," Materials Today, Vol. 19, 595, 2016.
doi:10.1016/j.mattod.2016.05.015        Google Scholar

21. Ko, H.-W., M.-H. Chi, C.-W. Chang, C.-W. Chu, K.-H. Luo, and J.-T. Chen, "Fabrication of coreshell polymer nanospheres in the nanopores of anodic Aluminum oxide templates using polymer blend solutions," ACS Macro Letters, Vol. 4, 717, 2015.
doi:10.1021/acsmacrolett.5b00297        Google Scholar

22. Lee, J. Y. and R.-K. Lee, "Exploring matter wave scattering by means of the phase diagram," EPL, Vol. 124, 30006, 2018.
doi:10.1209/0295-5075/124/30006        Google Scholar

23. Valagiannopoulos, C., "Maximal quantum scattering by homogeneous spherical inclusions," Phys. Rev. B, Vol. 100, 035308, 2019.
doi:10.1103/PhysRevB.100.035308        Google Scholar

24. Lee, J. Y., A. E. Miroshnichenko, and R.-K. Lee, "Designing quantum resonant scatterers at subwavelength scale," Phys. Lett. A, Vol. 381, 2860, 2017.
doi:10.1016/j.physleta.2017.06.051        Google Scholar

25. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, 126806, 2012.
doi:10.1103/PhysRevLett.109.126806        Google Scholar

26. Valagiannopoulos, C., "Perfect quantum cloaking of tilted cylindrical nanocavities," Phys. Rev. B, Vol. 101, 195301, 2020.
doi:10.1103/PhysRevB.101.195301        Google Scholar

27. Valagiannopoulos, C., E. A. Marengo, A. G. Dimakis, and A. Alu, "Aharonov-Bohm-inspired tomographic imaging via compressive sensing," IET Microw. Antennas Propag., Vol. 12, 1890, 2018.
doi:10.1049/iet-map.2017.0609        Google Scholar

28. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, 045423, 2013.
doi:10.1103/PhysRevB.87.045423        Google Scholar

29. Valagiannopoulos, C., A. N. Askarpour, and A. Alu, "Aharonov-Bohm detection of two-dimensional magnetostatic cloaks," Phys. Rev. B, Vol. 92, 224414, 2015.
doi:10.1103/PhysRevB.92.224414        Google Scholar

30. Lee, J. Y. and R.-K. Lee, "Hiding the interior region of core-shell nanoparticles with quantum invisible cloaks," Phys. Rev. B, Vol. 89, 155425, 2014.
doi:10.1103/PhysRevB.89.155425        Google Scholar

31. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, 201106(R), 2013.
doi:10.1103/PhysRevB.87.201106        Google Scholar

32. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, 123002, 2008.
doi:10.1103/PhysRevLett.100.123002        Google Scholar

33. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, 220404, 2008.
doi:10.1103/PhysRevLett.101.220404        Google Scholar

34. Valagiannopoulos, C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297, 2007.
doi:10.2528/PIER07041203        Google Scholar

35. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337        Google Scholar

36. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic pin in a slab," Progress In Electromagnetics Research, Vol. 79, 1, 2008.
doi:10.2528/PIER07092206        Google Scholar

37. Valagiannopoulos, C. A., "A novel methodology for estimating the permittivity of a specimen rod at low radio frequencies," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5–6, 631-640, 2010.
doi:10.1163/156939310791036331        Google Scholar

38. Trachanas, S., An Introduction to Quantum Physics: A First Course for Physicists, Chemists, Materials Scientists, and Engineers, John Wiley & Sons, 2018.

39. Griffiths, D. J., "Introduction to Quantum Mechanics," Pearson Prentice Hall, 2005.        Google Scholar

40. Hodge, W. B., S. V. Migirditch, and W. C. Kerr, "Electron spin and probability current density in quantum mechanics," Am. J. Phys., Vol. 82, 681, 2014.
doi:10.1119/1.4868094        Google Scholar

41. Balanis, C. A., Advanced Engineering Electromagnetics, JohnWiley & Sons, 2012.

42. Osipov, A. V. and S. A. Tretyakov, Modern Electromagnetic Scattering Theory with Applications, John Wiley & Sons, 2017.
doi:10.1002/9781119004639

43. Valagiannopoulos, C. A., "Single-series solution to the radiation of loop antenna in the presence of a conducting sphere," Progress In Electromagnetics Research, Vol. 71, 277, 2007.
doi:10.2528/PIER07030803        Google Scholar

44. Sheverdin, A. and C. Valagiannopoulos, "Core-shell nanospheres under visible light: Optimal absorption, scattering, and cloaking," Phys. Rev. B, Vol. 99, 075305, 2019.
doi:10.1103/PhysRevB.99.075305        Google Scholar

45. Cohen-Tannoudji, C., B. Diu, and F. Laloe, Quantum Mechanics, John Wiley & Sons, 1992.

46. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 1983.

47. Valagiannopoulos, C. A., "An overview of the Watson transformation presented through a simple example," Progress In Electromagnetics Research, Vol. 75, 137, 2007.
doi:10.2528/PIER07052502        Google Scholar

48. Mandilara, A., C. Valagiannopoulos, and V. M. Akulin, "Classical and quantum dispersion-free coherent propagation by tailoring multimodal coupling," Phys. Rev. A, Vol. 99, 023849, 2019.
doi:10.1103/PhysRevA.99.023849        Google Scholar

49. Abrashuly, A. and C. Valagiannopoulos, "Limits for absorption and scattering by core-shell nanowires in the visible spectrum," Phys. Rev. Appl., Vol. 11, 014051, 2019.
doi:10.1103/PhysRevApplied.11.014051        Google Scholar

50. Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, John Wiley & Sons, 2009.

51. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257, 2010.
doi:10.1103/RevModPhys.82.2257        Google Scholar

52. Valagiannopoulos, C., "Steering of quantum signals along coupled paths of arbitrary curvature," J. Opt. Soc. Am. B, Vol. 38, 263, 2021.
doi:10.1364/JOSAB.404394        Google Scholar