1. Lee, B. H., Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, "Interferometric fiber optic sensors," Sensors, Vol. 12, 2467-2486, 2012.
doi:10.3390/s120302467 Google Scholar
2. Wu, S., G. Yan, B. Zhou, E. Lee, and S. He, "Open-cavity Fabry-Perot interferometer based on etched side-hole fiber for microfluidic sensing," IEEE Photonics Technology Letters, Vol. 27, 1813-1816, 2015.
doi:10.1109/LPT.2015.2443375 Google Scholar
3. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
doi:10.1016/j.yofte.2021.102538 Google Scholar
4. Wang, T., M. Wang, and H. Ni, "Micro-Fabry-Pérot interferometer with high contrast based on an in-fiber ellipsoidal cavity," IEEE Photonics Technology Letters, Vol. 24, 948-950, 2012.
doi:10.1109/LPT.2012.2185841 Google Scholar
5. Favero, F. C., G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, "Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing," Optics Letters, Vol. 36, 4191-4193, 2011.
doi:10.1364/OL.36.004191 Google Scholar
6. Liu, X., M. Jiang, Q. Sui, and X. Geng, "Optical fibre Fabry-Perot relative humidity sensor based on HCPCF and chitosan film," Journal of Modern Optics, Vol. 63, 1668-1674, 2016.
doi:10.1080/09500340.2016.1167974 Google Scholar
7. Su, H., Y. Zhang, K. Ma, Y. Zhao, and C. Yu, "Tip packaged high-temperature miniature sensor based on suspended core optical fiber," Journal of Lightwave Technology, Vol. 38, 4160-4165, 2020.
doi:10.1109/JLT.2020.2975933 Google Scholar
8. Ferreira, M. S., L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, "Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube," Optics Letters, Vol. 36, 4029-4031, 2011.
doi:10.1364/OL.36.004029 Google Scholar
9. Zhang, Z., J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, "Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers," Optics Letters, Vol. 43, 6009-6012, 2018.
doi:10.1364/OL.43.006009 Google Scholar
10. Choi, H. Y., K. S. Pack, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Optics Letters, Vol. 33, 2455-2457, 2008.
doi:10.1364/OL.33.002455 Google Scholar
11. Lee, D., M. Yang, C. Huang, and J. Dai, "Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Pérot cavity," IEEE Photonics Technology Letters, Vol. 26, 2107-2110, 2014.
doi:10.1109/LPT.2014.2346622 Google Scholar
12. Yu, X., S. Wang, J. Jiang, et al. "Hybrid sapphire dual-Fabry-Perot-cavities sensor for high temperature and RI measurement," Journal of Lightwave Technology, Vol. 39, 3911-3918, 2021.
doi:10.1109/JLT.2020.3040415 Google Scholar
13. Zhang, H., Z. Wu, P. P. Shum, et al. "Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber," Scientific Reports, Vol. 7, 46633, 2017.
doi:10.1038/srep46633 Google Scholar
14. Wei, T., Y. Han, H. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Optics Letters, Vol. 33, 536-538, 2008.
doi:10.1364/OL.33.000536 Google Scholar
15. Chen, P. and X. Shu, "Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing," Optics Express, Vol. 26, 5292-5299, 2018.
doi:10.1364/OE.26.005292 Google Scholar
16. Gao, H., Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, "Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range," Journal of Lightwave Technology, Vol. 36, 5881-5886, 2018.
doi:10.1109/JLT.2018.2875941 Google Scholar
17. Liao, C. R., D. N. Wang, M. Wang, and M. Yang, "Fiber in-line Michelson interferometer tip sensor fabricated by femtosecond laser," IEEE Photonics Technology Letters, Vol. 24, 2060-2063, 2012.
doi:10.1109/LPT.2012.2219517 Google Scholar
18. Bae, H., X. M. Zhang, H. Liu, and M. Yu, "Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45˚ angled fiber," Optics Letters, Vol. 35, 1701-1703, 2010.
doi:10.1364/OL.35.001701 Google Scholar
19. Bae, H., L. Dunlap, J. Wong, and M. Yu, "Miniature temperature compensated fabry-perot pressure sensors created with self-aligned polymer photolithography process," IEEE Sensors Journal, Vol. 12, 1566-1573, 2012. Google Scholar
20. Zhu, J., M. Wang, L. Chen, X. Ni, and H. Ni, "An optical fiber Fabry-Perot pressure sensor using corrugated diaphragm and angle polished fiber," Optical Fiber Technology, Vol. 34, 42-46, 2017.
doi:10.1016/j.yofte.2016.12.004 Google Scholar
21. Pang, C., H. Bae, A. Gupta, K. Bryden, and M. Yu, "MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing," Optics Express, Vol. 21, 21829-21839, 2013.
doi:10.1364/OE.21.021829 Google Scholar
22. Wang, W., N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, "Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber," Optics Express, Vol. 17, 16613-16618, 2009.
doi:10.1364/OE.17.016613 Google Scholar
23. Liu, B., J. Lin, J. Wang, C. Ye, and P. Jin, "MEMS-based high-sensitivity Fabry-Perot acoustic sensor with a 45˚ angled fiber," IEEE Photonics Technology Letters, Vol. 28, 581-584, 2016.
doi:10.1109/LPT.2015.2506480 Google Scholar
24. Zhang, X., L. Li, X. Zou, et al. "Angled fiber-based Fabry-Perot interferometer," Optics Letters, Vol. 45, 292-295, 2020.
doi:10.1364/OL.45.000292 Google Scholar
25. Yin, J., T. Liu, J. Jiang, et al. "Assembly-free-based fiber-optic micro-michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, 625-628, 2016.
doi:10.1109/LPT.2015.2503276 Google Scholar
26. Wang, T., K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, "A large range temperature sensor based on an angled fiber end," Optical Fiber Technology, Vol. 45, 19-23, 2018.
doi:10.1016/j.yofte.2018.04.008 Google Scholar
27. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, 3753-3755, 2011.
doi:10.1364/OL.36.003753 Google Scholar
28. Zhao, N., Q. Lin, W. Jing, et al. "High temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers," Sensors and Actuators A: Physical, Vol. 267, 491-495, 2017.
doi:10.1016/j.sna.2017.09.016 Google Scholar
29. Li, Z., J. Tian, Y. Jiao, Y. Sun, and Y. Yao, "Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer," IEEE Photonics Journal, Vol. 11, 1-10, 2019. Google Scholar
30. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
doi:10.1016/j.optcom.2017.12.005 Google Scholar
31. Wu, Y., Y. Zhang, J. Wu, and P. Yuan, "Fiber-optic hybrid-structured Fabry-Perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature," Journal of Lightwave Technology, Vol. 35, 4311-4315, 2017.
doi:10.1109/JLT.2017.2734062 Google Scholar
32. Wang, R., J. Si, T. Chen, et al. "Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser," Optics Express, Vol. 25, 23684-23689, 2017.
doi:10.1364/OE.25.023684 Google Scholar
33. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, 5292-5297, 2020.
doi:10.1109/JSEN.2020.2970579 Google Scholar