Vol. 172
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-01-13
An Ultra-Compact and Reproducible Fiber Tip Michelson Interferometer for High-Temperature Sensing (Invited)
By
Progress In Electromagnetics Research, Vol. 172, 89-99, 2021
Abstract
An ultra-compact fiber tip Michelson interferometer (MI), primarily aimed for a reproducible and stable high-temperature sensing probe, is developed and demonstrated. Both single-mode fiber (SMF) and polarization maintaining fiber (PMF) are considered and compared. The tip MI is fabricated by only using a one-step partial-polishing technique, which forms a half oblique and half vertical end face and functions as a beam splitter. A wide spectra analysis proved that the interferometer has an optical path difference (OPD) that is consistent across samples. When the lead-in fiber suffers from bending or twisting, the interference spectrum for the PMF case is more stable than that for the SMF case. Experimental results show a linear average temperature sensitivity of 15.15 pm/˚C in the range of 100˚C to 1000˚C for three tested PMF samples, and the difference between the sensitivities of the samples is less than 4.0%. The ease of fabrication, highly compact structure, reproducibility, and excellent resistance to mechanical disturbance performance suggest that the proposed PMF tip MI is highly promising as a high temperature sensing probe with high spatial resolution.
Citation
Xun Wu, Shengnan Wu, Xiaolu Chen, Huaguan Lin, Erik Forsberg, and Sailing He, "An Ultra-Compact and Reproducible Fiber Tip Michelson Interferometer for High-Temperature Sensing (Invited)," Progress In Electromagnetics Research, Vol. 172, 89-99, 2021.
doi:10.2528/PIER21102703
References

1. Lee, B. H., Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, "Interferometric fiber optic sensors," Sensors, Vol. 12, 2467-2486, 2012.
doi:10.3390/s120302467

2. Wu, S., G. Yan, B. Zhou, E. Lee, and S. He, "Open-cavity Fabry-Perot interferometer based on etched side-hole fiber for microfluidic sensing," IEEE Photonics Technology Letters, Vol. 27, 1813-1816, 2015.
doi:10.1109/LPT.2015.2443375

3. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
doi:10.1016/j.yofte.2021.102538

4. Wang, T., M. Wang, and H. Ni, "Micro-Fabry-Pérot interferometer with high contrast based on an in-fiber ellipsoidal cavity," IEEE Photonics Technology Letters, Vol. 24, 948-950, 2012.
doi:10.1109/LPT.2012.2185841

5. Favero, F. C., G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, "Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing," Optics Letters, Vol. 36, 4191-4193, 2011.
doi:10.1364/OL.36.004191

6. Liu, X., M. Jiang, Q. Sui, and X. Geng, "Optical fibre Fabry-Perot relative humidity sensor based on HCPCF and chitosan film," Journal of Modern Optics, Vol. 63, 1668-1674, 2016.
doi:10.1080/09500340.2016.1167974

7. Su, H., Y. Zhang, K. Ma, Y. Zhao, and C. Yu, "Tip packaged high-temperature miniature sensor based on suspended core optical fiber," Journal of Lightwave Technology, Vol. 38, 4160-4165, 2020.
doi:10.1109/JLT.2020.2975933

8. Ferreira, M. S., L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, "Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube," Optics Letters, Vol. 36, 4029-4031, 2011.
doi:10.1364/OL.36.004029

9. Zhang, Z., J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, "Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers," Optics Letters, Vol. 43, 6009-6012, 2018.
doi:10.1364/OL.43.006009

10. Choi, H. Y., K. S. Pack, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Optics Letters, Vol. 33, 2455-2457, 2008.
doi:10.1364/OL.33.002455

11. Lee, D., M. Yang, C. Huang, and J. Dai, "Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Pérot cavity," IEEE Photonics Technology Letters, Vol. 26, 2107-2110, 2014.
doi:10.1109/LPT.2014.2346622

12. Yu, X., S. Wang, J. Jiang, et al. "Hybrid sapphire dual-Fabry-Perot-cavities sensor for high temperature and RI measurement," Journal of Lightwave Technology, Vol. 39, 3911-3918, 2021.
doi:10.1109/JLT.2020.3040415

13. Zhang, H., Z. Wu, P. P. Shum, et al. "Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber," Scientific Reports, Vol. 7, 46633, 2017.
doi:10.1038/srep46633

14. Wei, T., Y. Han, H. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Optics Letters, Vol. 33, 536-538, 2008.
doi:10.1364/OL.33.000536

15. Chen, P. and X. Shu, "Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing," Optics Express, Vol. 26, 5292-5299, 2018.
doi:10.1364/OE.26.005292

16. Gao, H., Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, "Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range," Journal of Lightwave Technology, Vol. 36, 5881-5886, 2018.
doi:10.1109/JLT.2018.2875941

17. Liao, C. R., D. N. Wang, M. Wang, and M. Yang, "Fiber in-line Michelson interferometer tip sensor fabricated by femtosecond laser," IEEE Photonics Technology Letters, Vol. 24, 2060-2063, 2012.
doi:10.1109/LPT.2012.2219517

18. Bae, H., X. M. Zhang, H. Liu, and M. Yu, "Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45˚ angled fiber," Optics Letters, Vol. 35, 1701-1703, 2010.
doi:10.1364/OL.35.001701

19. Bae, H., L. Dunlap, J. Wong, and M. Yu, "Miniature temperature compensated fabry-perot pressure sensors created with self-aligned polymer photolithography process," IEEE Sensors Journal, Vol. 12, 1566-1573, 2012.

20. Zhu, J., M. Wang, L. Chen, X. Ni, and H. Ni, "An optical fiber Fabry-Perot pressure sensor using corrugated diaphragm and angle polished fiber," Optical Fiber Technology, Vol. 34, 42-46, 2017.
doi:10.1016/j.yofte.2016.12.004

21. Pang, C., H. Bae, A. Gupta, K. Bryden, and M. Yu, "MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing," Optics Express, Vol. 21, 21829-21839, 2013.
doi:10.1364/OE.21.021829

22. Wang, W., N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, "Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber," Optics Express, Vol. 17, 16613-16618, 2009.
doi:10.1364/OE.17.016613

23. Liu, B., J. Lin, J. Wang, C. Ye, and P. Jin, "MEMS-based high-sensitivity Fabry-Perot acoustic sensor with a 45˚ angled fiber," IEEE Photonics Technology Letters, Vol. 28, 581-584, 2016.
doi:10.1109/LPT.2015.2506480

24. Zhang, X., L. Li, X. Zou, et al. "Angled fiber-based Fabry-Perot interferometer," Optics Letters, Vol. 45, 292-295, 2020.
doi:10.1364/OL.45.000292

25. Yin, J., T. Liu, J. Jiang, et al. "Assembly-free-based fiber-optic micro-michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, 625-628, 2016.
doi:10.1109/LPT.2015.2503276

26. Wang, T., K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, "A large range temperature sensor based on an angled fiber end," Optical Fiber Technology, Vol. 45, 19-23, 2018.
doi:10.1016/j.yofte.2018.04.008

27. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, 3753-3755, 2011.
doi:10.1364/OL.36.003753

28. Zhao, N., Q. Lin, W. Jing, et al. "High temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers," Sensors and Actuators A: Physical, Vol. 267, 491-495, 2017.
doi:10.1016/j.sna.2017.09.016

29. Li, Z., J. Tian, Y. Jiao, Y. Sun, and Y. Yao, "Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer," IEEE Photonics Journal, Vol. 11, 1-10, 2019.

30. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
doi:10.1016/j.optcom.2017.12.005

31. Wu, Y., Y. Zhang, J. Wu, and P. Yuan, "Fiber-optic hybrid-structured Fabry-Perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature," Journal of Lightwave Technology, Vol. 35, 4311-4315, 2017.
doi:10.1109/JLT.2017.2734062

32. Wang, R., J. Si, T. Chen, et al. "Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser," Optics Express, Vol. 25, 23684-23689, 2017.
doi:10.1364/OE.25.023684

33. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, 5292-5297, 2020.
doi:10.1109/JSEN.2020.2970579