Vol. 172
Latest Volume
All Volumes
PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-31
Recent Advances in Transfer Function-Based Surrogate Optimization for EM Design (Invited)
By
Progress In Electromagnetics Research, Vol. 172, 61-75, 2021
Abstract
This airticle provides a review of transfer function-based (TF-based) surrogate optimization for electromagnetic (EM) design. Transfer functions (TF) represent the EM responses of passive microwave components versus frequency. With the assistance of TF, the nonlinearity of the model structure can be decreased. Parallel gradient-based EM optimization technique using TF in rational format and trust region algorithm is introduced first. Following that, we review the EM optimization using adjoint sensitivity-based neuro-TF surrogate, where the neuro-TF modeling method is in pole/residue format. The adjoint sensitivity-based neuro-TF surrogate technique can reach the optimal EM responses solution faster than the existing gradient-based surrogate optimization methods without sensitivity information. As a further advancement, we discuss the multifeature-assisted neuro-TF surrogate optimization technique. With the help of multiple feature parameters, the multifeature-assisted neuro-TF surrogate optimization has a better ability of avoiding local minima and can achive the optimal EM solution faster than the surrogate optimizations without feature assistance. Three examples are used to verify the above three methods.
Citation
Wei Liu Feng Feng Qijun Zhang , "Recent Advances in Transfer Function-Based Surrogate Optimization for EM Design (Invited)," Progress In Electromagnetics Research, Vol. 172, 61-75, 2021.
doi:10.2528/PIER21110302
http://www.jpier.org/PIER/pier.php?paper=21110302
References

1. Zhang, C., J. Jin, W. Na, Q. J. Zhang, and M. Yu, "Multivalued neural network inverse modeling and applications to microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 8, 3781-3797, Aug. 2018.
doi:

504 Gateway Time-out


2. Jin, J., C. Zhang, F. Feng, W. Na, J. Ma, and Q. J. Zhang, IEEE Trans. Microw. Theory Tech., Vol. 67, No. 10, 4140-4155, Oct. 2019.
doi:

3. Wei, Z. and X. Chen, "Uncertainty quantification in inverse scattering problems with Bayesian convolutional neural networks," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3409-3418, Jun. 2021.

4. Bandler, J., M. Ismail, J. Rayas-Sanchez, and Q.-J. Zhang, "Neuromodeling of microwave circuits exploiting space-mapping technology," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2417-2427, Dec. 1999.

5. Bandler, J., Q. Cheng, S. Dakroury, A. Mohamed, M. Bakr, K. Madsen, and J. Sondergaard, "Space mapping: The state of the art," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 337-361, Jan. 2004.

6. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Space mapping," IEEE Microw. Mag., Vol. 9, 105-122, Dec. 2008.

7. Bandler, J., Q. Cheng, N. Nikolova, and M. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 378-385, Jan. 2004.

8. Rayas-Sanchez, J. E., "Power in simplicity with asm: Tracing the aggressive space mapping algorithm over two decades of development and engineering applications," IEEE Microw. Mag., Vol. 17, No. 4, 64-76, Apr. 2016.

9. Sans, M., J. Selga, P. Vlez, A. Rodrguez, J. Bonache, V. E. Boria, and F. Martn, "Automated design of common-mode suppressed balanced wideband bandpass filters by means of aggressive space mapping," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 3896-3908, Dec. 2015.

10. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 478-486, Feb. 2009.

11. Ayed, R. B., J. Gong, S. Brisset, F. Gillon, and P. Brochet, "Three-level output space mapping strategy for electromagnetic design optimization," IEEE Microw. Mag., Vol. 48, No. 2, 671-674, Feb. 2012.

12. Devabhaktuni, V., B. Chattaraj, M. Yagoub, and Q.-J. Zhang, "Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1822-1833, Jul. 2003.

13. Rayas-Sanchez, J., "Em-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 420-435, Jan. 2004.

14. Rayas-Sanchez, J., F. Lara-Rojo, and E. Martinez-Guerrero, "A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 3, 960-968, Mar. 2005.

15. Zhang, L., J. Xu, M. Yagoub, R. Ding, and Q.-J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2752-2767, Sep. 2005.

16. Zhang, L., Q.-J. Zhang, and J. Wood, "Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2453-2467, Nov. 2008.

17. Koziel, S., J. Bandler, and K. Madsen, "A space-mapping framework for engineering optimization theory and implementation," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.

18. Zhang, L., P. H. Aaen, and J. Wood, "Portable space mapping for efficient statistical modeling of passive components," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, 441-450, Mar. 2012.

19. Koziel, S., S. Ogurtsov, J. W. Bandler, and Q. S. Cheng, "Reliable space-mapping optimization integrated with em-based adjoint sensitivities," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3493-3502, Oct. 2013.

20. Feng, F., C. Zhang, V.-M.-R. Gongal-Reddy, Q.-J. Zhang, and J. Ma, "Parallel space-mapping approach to EM optimization," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 5, 1135-1148, May 2014.

21. Ros, J., P. Pacheco, H. Gonzalez, V. Esbert, C. Martin, M. Calduch, S. Borras, and B. Martinez, "Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 4, 1130-1142, Apr. 2005.

22. Ismail, M., D. Smith, A. Panariello, Y.Wang, and M. Yu, "Em-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 386-392, Jan. 2004.

23. Wu, K.-L., Y.-J. Zhao, J. Wang, and M. Cheng, "An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 393-402, Jan. 2004.

24. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 5, 2153-2159, May 2006.

25. Dorica, M. and D. Giannacopoulos, "Response surface space mapping for electromagnetic optimization," IEEE Microw. Mag., Vol. 42, No. 4, 1123-1126, Apr. 2006.

26. Bandler, J. W., M. A. Ismail, and J. E. Rayas-Sanchez, "Expanded space-mapping EM-based design framework exploiting preassigned parameters," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 49, No. 12, 1833-1838, Dec. 2002.

27. Bandler, J. W., D. M. Hailu, K. Madsen, and F. Pedersen, "A space mapping interpolating surrogate algorithm for highly optimized EM-based design of microwave devices," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 11, 2593-2600, Nov. 2004.

28. Ayed, R. B., J. Gong, S. Brisset, F. Gillon, and P. Brochet, "Three-level output space mapping strategy for electromagnetic design optimization," IEEE Trans. Magn., Vol. 48, No. 2, 671-674, Feb. 2012.

29. Zhang, L., J. Xu, M. C. E. Yagoub, R. Ding, and Q. J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 9, 2752-2767, Sep. 2005.

30. Bakr, M. H., J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang, "Neural space-mapping optimization for EM-based design," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 12, 2307-2315, Dec. 2000.

31. Gutierrez-Ayala, V. and J. E. Rayas-Sanchez, "Neural input space mapping optimization based on nonlinear two-layer perceptrons with optimized nonlinearity," Int. J. RF Microw. Comput.-Aided Eng., Vol. 20, No. 5, 512-526, Sep. 2010.

32. Feng, F. and Q. J. Zhang, "Neural space mapping optimization for EM design," Proc. Asia-Pacific Microw. Conf., 1-3, Nanjing, China, Dec. 2015.

33. Gorissen, D., L. Zhang, Q. J. Zhang, and T. Dhaene, "Evolutionary neuro-space mapping technique for modeling of nonlinear microwave devices," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 2, 213-229, Feb. 2011.

34. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 10, 3721-3730, Oct. 2006.

35. Koziel, S., J. W. Bandler, and Q. S. Cheng, "Tuning space mapping design framework exploiting reduced electromagnetic models," IET Microw. Antennas Propag., Vol. 5, No. 10, 1219-1226, Jul. 2011.

36. Meng, J., S. Koziel, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Tuning space mapping: A novel technique for engineering design optimization," IEEE MTT-S Int. Microw. Symp. Dig., 991-994, Atlanta, Georgia, Jun. 2008.

37. Zhang, C., F. Feng, and Q. J. Zhang, "EM optimization using coarse and fine mesh space mapping," Proc. Asia-Pacific Microw. Conf., 824-826, Seoul, Korea, Dec. 2013.

38. Feng, F., C. Zhang, V. M. R. Gongal-Reddy, and Q. J. Zhang, "Knowledge-based coarse and fine mesh space mapping approach to EM optimization," Int. Conf. Numerical Electromagnetic Modeling and Optimization, 1-4, Pavia, Italy, May 2014.

39. Koziel, S., S. Ogurtsov, J. W. Bandler, and Q. S. Cheng, "Reliable space-mapping optimization integrated with EM-based adjoint sensitivities," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 10, 3493-3502, Oct. 2013.

40. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Fast EM modeling exploiting shape-preserving response prediction and space mapping," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 3, 399-407, Mar. 2014.

41. Feng, F., V. M. R. Gongal-Reddy, C. Zhang, W. Na, S. Zhang, and Q. J. Zhang, "Recent advances in parallel EM optimization approaches," IEEE MTT-S Int. Conf. Microw. Millimeter Wave Technology, 1-3, Beijing, China, Jun. 2016.

42. Feng, F., V. M. R. Gongal-Reddy, S. Zhang, and Q. J. Zhang, "Recent advances in space mapping approach to EM optimization," Proc. Asia-Pacic Microw. Conf., 1-3, Nanjing, China, Dec. 2015.

43. Garcia-Lamperez, A., S. Llorente-Romano, M. Salazar-Palma, and T. K. Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 508-521, Feb. 2004.

44. Garcia-Lamperez, A. and M. Salazar-Palma, "Multilevel aggressive space mapping applied to coupled-resonator filters," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, San Francisco, CA, May 2016.

45. Feng, F., C. Zhang, V. M. R. Gongal-Reddy, Q. J. Zhang, and J. Ma, "Parallel space-mapping approach to EM optimization," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 5, 1135-1148, Apr. 2014.

46. Tu, S., Q. S. Cheng, Y. Zhang, J. W. Bandler, and N. K. Nikolova, "Space mapping optimization of handset antennas exploiting thin-wire models," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3797-3807, Jul. 2013.

47. Cao, Y., G. Wang, and Q.-J. Zhang, "A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 11, 2727-2742, Nov. 2009.

48. Feng, F., C. Zhang, J. Ma, and Q.-J. Zhang, "Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 60-77, Jan. 2016.

49. Feng, F., V.-M.-R. Gongal-Reddy, C. Zhang, J. Ma, and Q.-J. Zhang, "Parametric modeling of microwave components using adjoint neural networks and pole-residue transfer functions with EM sensitivity analysis," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 6, 1955-1975, Jun. 2017.

50. Gongal-Reddy, V.-M.-R., S. Zhang, C. Zhang, and Q.-J. Zhang, "Parallel computational approach to gradient based EM optimization of passive microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 44-59, Jan. 2016.

51. Gongal-Reddy, V.-M.-R., F. Feng, C. Zhang, S. Zhang, and Q.-J. Zhang, "Parallel decomposition approach to gradient-based em optimization," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3380-3399, Nov. 2016.

52. Koziel, S., "Shape-preserving response prediction for microwave design optimization," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 11, 2829-2837, Nov. 2010.

53. Zhang, C., F. Feng, V.-M.-R. Gongal-Reddy, Q. J. Zhang, and J. W. Bandler, "Cognition-driven formulation of space mapping for equal-ripple optimization of microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 7, 2154-2165, Jul. 2015.

54. Zhang, C., F. Feng, Q. Zhang, and J. W. Bandler, "Enhanced cognition-driven formulation of space mapping for equal-ripple optimisation of microwave filters," IET Microw., Antennas Propag., Vol. 12, No. 1, 82-91, Dec. 2018.

55. Feng, F., C. Zhang, S. Zhang, V.-M.-R. Gongal-Reddy, and Q.-J. Zhang, "Parallel EM optimization approach to microwave filter design using feature assisted neuro-transfer functions," 2016 IEEE/MTT-S International Microwave Symposium - MTT 2016, 1-3, IEEE, San Francisco, CA, USA, May 2016.

56. Feng, F., W. Na, W. Liu, S. Yan, L. Zhu, and Q.-J. Zhang, "Parallel gradient-based em optimization for microwave components using adjoint-sensitivity-based neuro-transfer function surrogate," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 9, 3606-3620, Sep. 2020.

57. Feng, F., W. Na, W. Liu, S. Yan, L. Zhu, J. Ma, and Q.-J. Zhang, "Multifeature-assisted neuro-transfer function surrogate-based EM optimization exploiting trust-region algorithms for microwave filter design," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 2, 531-542, Feb. 2020.

58. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Deliv., Vol. 14, 1052-1061, Jul. 1999.