Vol. 172
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2021-12-31
Recent Advances in Transfer Function-Based Surrogate Optimization for EM Design (Invited)
By
Progress In Electromagnetics Research, Vol. 172, 61-75, 2021
Abstract
This airticle provides a review of transfer function-based (TF-based) surrogate optimization for electromagnetic (EM) design. Transfer functions (TF) represent the EM responses of passive microwave components versus frequency. With the assistance of TF, the nonlinearity of the model structure can be decreased. Parallel gradient-based EM optimization technique using TF in rational format and trust region algorithm is introduced first. Following that, we review the EM optimization using adjoint sensitivity-based neuro-TF surrogate, where the neuro-TF modeling method is in pole/residue format. The adjoint sensitivity-based neuro-TF surrogate technique can reach the optimal EM responses solution faster than the existing gradient-based surrogate optimization methods without sensitivity information. As a further advancement, we discuss the multifeature-assisted neuro-TF surrogate optimization technique. With the help of multiple feature parameters, the multifeature-assisted neuro-TF surrogate optimization has a better ability of avoiding local minima and can achive the optimal EM solution faster than the surrogate optimizations without feature assistance. Three examples are used to verify the above three methods.
Citation
Wei Liu, Feng Feng, and Qijun Zhang, "Recent Advances in Transfer Function-Based Surrogate Optimization for EM Design (Invited)," Progress In Electromagnetics Research, Vol. 172, 61-75, 2021.
doi:10.2528/PIER21110302
References

1. Zhang, C., J. Jin, W. Na, Q. J. Zhang, and M. Yu, "Multivalued neural network inverse modeling and applications to microwave filters," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 8, 3781-3797, Aug. 2018.
doi:10.1109/TMTT.2018.2841889        Google Scholar

2. Jin, J., C. Zhang, F. Feng, W. Na, J. Ma, and Q. J. Zhang, IEEE Trans. Microw. Theory Tech., Vol. 67, No. 10, 4140-4155, Oct. 2019.
doi:        Google Scholar

3. Wei, Z. and X. Chen, "Uncertainty quantification in inverse scattering problems with Bayesian convolutional neural networks," IEEE Trans. Antennas Propag., Vol. 69, No. 6, 3409-3418, Jun. 2021.
doi:10.1109/TAP.2020.3030974        Google Scholar

4. Bandler, J., M. Ismail, J. Rayas-Sanchez, and Q.-J. Zhang, "Neuromodeling of microwave circuits exploiting space-mapping technology," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 12, 2417-2427, Dec. 1999.
doi:10.1109/22.808989        Google Scholar

5. Bandler, J., Q. Cheng, S. Dakroury, A. Mohamed, M. Bakr, K. Madsen, and J. Sondergaard, "Space mapping: The state of the art," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 337-361, Jan. 2004.
doi:10.1109/TMTT.2003.820904        Google Scholar

6. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Space mapping," IEEE Microw. Mag., Vol. 9, 105-122, Dec. 2008.
doi:10.1109/MMM.2008.929554        Google Scholar

7. Bandler, J., Q. Cheng, N. Nikolova, and M. Ismail, "Implicit space mapping optimization exploiting preassigned parameters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 378-385, Jan. 2004.
doi:10.1109/TMTT.2003.820892        Google Scholar

8. Rayas-Sanchez, J. E., "Power in simplicity with asm: Tracing the aggressive space mapping algorithm over two decades of development and engineering applications," IEEE Microw. Mag., Vol. 17, No. 4, 64-76, Apr. 2016.
doi:10.1109/MMM.2015.2514188        Google Scholar

9. Sans, M., J. Selga, P. Vlez, A. Rodrguez, J. Bonache, V. E. Boria, and F. Martn, "Automated design of common-mode suppressed balanced wideband bandpass filters by means of aggressive space mapping," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 12, 3896-3908, Dec. 2015.
doi:10.1109/TMTT.2015.2495180        Google Scholar

10. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 2, 478-486, Feb. 2009.
doi:10.1109/TMTT.2008.2011243        Google Scholar

11. Ayed, R. B., J. Gong, S. Brisset, F. Gillon, and P. Brochet, "Three-level output space mapping strategy for electromagnetic design optimization," IEEE Microw. Mag., Vol. 48, No. 2, 671-674, Feb. 2012.
doi:10.1109/TMAG.2011.2174349        Google Scholar

12. Devabhaktuni, V., B. Chattaraj, M. Yagoub, and Q.-J. Zhang, "Advanced microwave modeling framework exploiting automatic model generation, knowledge neural networks, and space mapping," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 7, 1822-1833, Jul. 2003.
doi:10.1109/TMTT.2003.814318        Google Scholar

13. Rayas-Sanchez, J., "Em-based optimization of microwave circuits using artificial neural networks: The state-of-the-art," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 1, 420-435, Jan. 2004.
doi:10.1109/TMTT.2003.820897        Google Scholar

14. Rayas-Sanchez, J., F. Lara-Rojo, and E. Martinez-Guerrero, "A linear inverse space-mapping (LISM) algorithm to design linear and nonlinear RF and microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 3, 960-968, Mar. 2005.
doi:10.1109/TMTT.2004.842482        Google Scholar

15. Zhang, L., J. Xu, M. Yagoub, R. Ding, and Q.-J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 9, 2752-2767, Sep. 2005.
doi:10.1109/TMTT.2005.854190        Google Scholar

16. Zhang, L., Q.-J. Zhang, and J. Wood, "Statistical neuro-space mapping technique for large-signal modeling of nonlinear devices," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 11, 2453-2467, Nov. 2008.
doi:10.1109/TMTT.2008.2004894        Google Scholar

17. Koziel, S., J. Bandler, and K. Madsen, "A space-mapping framework for engineering optimization theory and implementation," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894        Google Scholar

18. Zhang, L., P. H. Aaen, and J. Wood, "Portable space mapping for efficient statistical modeling of passive components," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, 441-450, Mar. 2012.
doi:10.1109/TMTT.2011.2182655        Google Scholar

19. Koziel, S., S. Ogurtsov, J. W. Bandler, and Q. S. Cheng, "Reliable space-mapping optimization integrated with em-based adjoint sensitivities," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 10, 3493-3502, Oct. 2013.
doi:10.1109/TMTT.2013.2278148        Google Scholar

20. Feng, F., C. Zhang, V.-M.-R. Gongal-Reddy, Q.-J. Zhang, and J. Ma, "Parallel space-mapping approach to EM optimization," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 5, 1135-1148, May 2014.
doi:10.1109/TMTT.2014.2315781        Google Scholar

21. Ros, J., P. Pacheco, H. Gonzalez, V. Esbert, C. Martin, M. Calduch, S. Borras, and B. Martinez, "Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 4, 1130-1142, Apr. 2005.
doi:10.1109/TMTT.2005.845685        Google Scholar

22. Ismail, M., D. Smith, A. Panariello, Y.Wang, and M. Yu, "Em-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 386-392, Jan. 2004.
doi:10.1109/TMTT.2003.820900        Google Scholar

23. Wu, K.-L., Y.-J. Zhao, J. Wang, and M. Cheng, "An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 1, 393-402, Jan. 2004.
doi:10.1109/TMTT.2003.820901        Google Scholar

24. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 5, 2153-2159, May 2006.
doi:10.1109/TMTT.2006.872811        Google Scholar

25. Dorica, M. and D. Giannacopoulos, "Response surface space mapping for electromagnetic optimization," IEEE Microw. Mag., Vol. 42, No. 4, 1123-1126, Apr. 2006.
doi:10.1109/TMAG.2006.872018        Google Scholar

26. Bandler, J. W., M. A. Ismail, and J. E. Rayas-Sanchez, "Expanded space-mapping EM-based design framework exploiting preassigned parameters," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 49, No. 12, 1833-1838, Dec. 2002.
doi:10.1109/TCSI.2002.805716        Google Scholar

27. Bandler, J. W., D. M. Hailu, K. Madsen, and F. Pedersen, "A space mapping interpolating surrogate algorithm for highly optimized EM-based design of microwave devices," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 11, 2593-2600, Nov. 2004.
doi:10.1109/TMTT.2004.837197        Google Scholar

28. Ayed, R. B., J. Gong, S. Brisset, F. Gillon, and P. Brochet, "Three-level output space mapping strategy for electromagnetic design optimization," IEEE Trans. Magn., Vol. 48, No. 2, 671-674, Feb. 2012.
doi:10.1109/TMAG.2011.2174349        Google Scholar

29. Zhang, L., J. Xu, M. C. E. Yagoub, R. Ding, and Q. J. Zhang, "Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling," IEEE Trans. Microw. Theory Techn., Vol. 53, No. 9, 2752-2767, Sep. 2005.
doi:10.1109/TMTT.2005.854190        Google Scholar

30. Bakr, M. H., J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang, "Neural space-mapping optimization for EM-based design," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 12, 2307-2315, Dec. 2000.
doi:10.1109/22.898979        Google Scholar

31. Gutierrez-Ayala, V. and J. E. Rayas-Sanchez, "Neural input space mapping optimization based on nonlinear two-layer perceptrons with optimized nonlinearity," Int. J. RF Microw. Comput.-Aided Eng., Vol. 20, No. 5, 512-526, Sep. 2010.
doi:10.1002/mmce.20457        Google Scholar

32. Feng, F. and Q. J. Zhang, "Neural space mapping optimization for EM design," Proc. Asia-Pacific Microw. Conf., 1-3, Nanjing, China, Dec. 2015.        Google Scholar

33. Gorissen, D., L. Zhang, Q. J. Zhang, and T. Dhaene, "Evolutionary neuro-space mapping technique for modeling of nonlinear microwave devices," IEEE Trans. Microw. Theory Techn., Vol. 59, No. 2, 213-229, Feb. 2011.
doi:10.1109/TMTT.2010.2090169        Google Scholar

34. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894        Google Scholar

35. Koziel, S., J. W. Bandler, and Q. S. Cheng, "Tuning space mapping design framework exploiting reduced electromagnetic models," IET Microw. Antennas Propag., Vol. 5, No. 10, 1219-1226, Jul. 2011.
doi:10.1049/iet-map.2011.0138        Google Scholar

36. Meng, J., S. Koziel, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Tuning space mapping: A novel technique for engineering design optimization," IEEE MTT-S Int. Microw. Symp. Dig., 991-994, Atlanta, Georgia, Jun. 2008.        Google Scholar

37. Zhang, C., F. Feng, and Q. J. Zhang, "EM optimization using coarse and fine mesh space mapping," Proc. Asia-Pacific Microw. Conf., 824-826, Seoul, Korea, Dec. 2013.        Google Scholar

38. Feng, F., C. Zhang, V. M. R. Gongal-Reddy, and Q. J. Zhang, "Knowledge-based coarse and fine mesh space mapping approach to EM optimization," Int. Conf. Numerical Electromagnetic Modeling and Optimization, 1-4, Pavia, Italy, May 2014.        Google Scholar

39. Koziel, S., S. Ogurtsov, J. W. Bandler, and Q. S. Cheng, "Reliable space-mapping optimization integrated with EM-based adjoint sensitivities," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 10, 3493-3502, Oct. 2013.
doi:10.1109/TMTT.2013.2278148        Google Scholar

40. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Fast EM modeling exploiting shape-preserving response prediction and space mapping," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 3, 399-407, Mar. 2014.
doi:10.1109/TMTT.2014.2300447        Google Scholar

41. Feng, F., V. M. R. Gongal-Reddy, C. Zhang, W. Na, S. Zhang, and Q. J. Zhang, "Recent advances in parallel EM optimization approaches," IEEE MTT-S Int. Conf. Microw. Millimeter Wave Technology, 1-3, Beijing, China, Jun. 2016.        Google Scholar

42. Feng, F., V. M. R. Gongal-Reddy, S. Zhang, and Q. J. Zhang, "Recent advances in space mapping approach to EM optimization," Proc. Asia-Pacic Microw. Conf., 1-3, Nanjing, China, Dec. 2015.        Google Scholar

43. Garcia-Lamperez, A., S. Llorente-Romano, M. Salazar-Palma, and T. K. Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 508-521, Feb. 2004.
doi:10.1109/TMTT.2003.822021        Google Scholar

44. Garcia-Lamperez, A. and M. Salazar-Palma, "Multilevel aggressive space mapping applied to coupled-resonator filters," IEEE MTT-S Int. Microw. Symp. Dig., 1-4, San Francisco, CA, May 2016.        Google Scholar

45. Feng, F., C. Zhang, V. M. R. Gongal-Reddy, Q. J. Zhang, and J. Ma, "Parallel space-mapping approach to EM optimization," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 5, 1135-1148, Apr. 2014.
doi:10.1109/TMTT.2014.2315781        Google Scholar

46. Tu, S., Q. S. Cheng, Y. Zhang, J. W. Bandler, and N. K. Nikolova, "Space mapping optimization of handset antennas exploiting thin-wire models," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3797-3807, Jul. 2013.
doi:10.1109/TAP.2013.2254695        Google Scholar

47. Cao, Y., G. Wang, and Q.-J. Zhang, "A new training approach for parametric modeling of microwave passive components using combined neural networks and transfer functions," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 11, 2727-2742, Nov. 2009.        Google Scholar

48. Feng, F., C. Zhang, J. Ma, and Q.-J. Zhang, "Parametric modeling of EM behavior of microwave components using combined neural networks and pole-residue-based transfer functions," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 60-77, Jan. 2016.
doi:10.1109/TMTT.2015.2504099        Google Scholar

49. Feng, F., V.-M.-R. Gongal-Reddy, C. Zhang, J. Ma, and Q.-J. Zhang, "Parametric modeling of microwave components using adjoint neural networks and pole-residue transfer functions with EM sensitivity analysis," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 6, 1955-1975, Jun. 2017.
doi:10.1109/TMTT.2017.2650904        Google Scholar

50. Gongal-Reddy, V.-M.-R., S. Zhang, C. Zhang, and Q.-J. Zhang, "Parallel computational approach to gradient based EM optimization of passive microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 1, 44-59, Jan. 2016.
doi:10.1109/TMTT.2015.2504096        Google Scholar

51. Gongal-Reddy, V.-M.-R., F. Feng, C. Zhang, S. Zhang, and Q.-J. Zhang, "Parallel decomposition approach to gradient-based em optimization," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3380-3399, Nov. 2016.
doi:10.1109/TMTT.2016.2605666        Google Scholar

52. Koziel, S., "Shape-preserving response prediction for microwave design optimization," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 11, 2829-2837, Nov. 2010.
doi:10.1109/TMTT.2010.2078890        Google Scholar

53. Zhang, C., F. Feng, V.-M.-R. Gongal-Reddy, Q. J. Zhang, and J. W. Bandler, "Cognition-driven formulation of space mapping for equal-ripple optimization of microwave filters," IEEE Trans. Microw. Theory Techn., Vol. 63, No. 7, 2154-2165, Jul. 2015.
doi:10.1109/TMTT.2015.2431675        Google Scholar

54. Zhang, C., F. Feng, Q. Zhang, and J. W. Bandler, "Enhanced cognition-driven formulation of space mapping for equal-ripple optimisation of microwave filters," IET Microw., Antennas Propag., Vol. 12, No. 1, 82-91, Dec. 2018.
doi:10.1049/iet-map.2017.0238        Google Scholar

55. Feng, F., C. Zhang, S. Zhang, V.-M.-R. Gongal-Reddy, and Q.-J. Zhang, "Parallel EM optimization approach to microwave filter design using feature assisted neuro-transfer functions," 2016 IEEE/MTT-S International Microwave Symposium - MTT 2016, 1-3, IEEE, San Francisco, CA, USA, May 2016.        Google Scholar

56. Feng, F., W. Na, W. Liu, S. Yan, L. Zhu, and Q.-J. Zhang, "Parallel gradient-based em optimization for microwave components using adjoint-sensitivity-based neuro-transfer function surrogate," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 9, 3606-3620, Sep. 2020.
doi:10.1109/TMTT.2020.3005145        Google Scholar

57. Feng, F., W. Na, W. Liu, S. Yan, L. Zhu, J. Ma, and Q.-J. Zhang, "Multifeature-assisted neuro-transfer function surrogate-based EM optimization exploiting trust-region algorithms for microwave filter design," IEEE Trans. Microw. Theory Techn., Vol. 68, No. 2, 531-542, Feb. 2020.
doi:10.1109/TMTT.2019.2952101        Google Scholar

58. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Deliv., Vol. 14, 1052-1061, Jul. 1999.        Google Scholar