1. Zhao, Z.-Q., P. Zheng, S.-T. Xu, and X. Wu, "Object detection with deep learning: A review," IEEE Transactions on Neural Networks and Learning Systems, Vol. 30, No. 11, 3212-3232, 2019.
doi:10.1109/TNNLS.2018.2876865 Google Scholar
2. Trajanovski, S., C. Shan, P. J. C. Weijtmans, S. G. B. de Koning, and T. J. M. Ruers, "Tongue tumor detection in hyperspectral images using deep learning semantic segmentation," IEEE Transactions on Biomedical Engineering, Vol. 68, No. 4, 1330-1340, 2020.
doi:10.1109/TBME.2020.3026683 Google Scholar
3. Zhao, S., D. M. Zhang, and H. W. Huang, "Deep learning-based image instance segmentation for moisture marks of shield tunnel lining," Tunnelling and Underground Space Technology, Vol. 95, 103156, 2020.
doi:10.1016/j.tust.2019.103156 Google Scholar
4. Yang, W., X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao, "Deep learning for single image super-resolution: A brief review," IEEE Transactions on Multimedia, Vol. 21, No. 12, 3106-3121, 2019.
doi:10.1109/TMM.2019.2919431 Google Scholar
5. Ledig, C., L. Theis, F. Huszar, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z.Wang, et al. "Photo-realistic single image super-resolution using a generative adversarial network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4681-4690, 2017. Google Scholar
6. Kim, K. I. and Y. Kwon, "Single-image super-resolution using sparse regression and natural image prior," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, No. 6, 1127-1133, 2010.
doi:10.1109/TPAMI.2010.25 Google Scholar
7. Kirkland, E. J., "Bilinear interpolation," Advanced Computing in Electron Microscopy, 261-263, Springer, 2010.
doi:10.1007/978-1-4419-6533-2_12 Google Scholar
8. Liu, T., K. De Haan, Y. Rivenson, Z. Wei, X. Zeng, Y. Zhang, and A. Ozcan, "Deep learning-based super-resolution in coherent imaging systems," Scientic Reports, Vol. 9, No. 1, 1-13, 2019. Google Scholar
9. Dong, C., C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 2, 295-307, 2015.
doi:10.1109/TPAMI.2015.2439281 Google Scholar
10. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016. Google Scholar
11. Lim, B., S. Son, H. Kim, S. Nah, and K. M. Lee, "Enhanced deep residual networks for single image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 136-144, 2017. Google Scholar
12. Zhang, Y., K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, "Image superresolution using very deep residual channel attention networks," Proceedings of the European Conference on Computer Vision (ECCV), 286-301, 2018. Google Scholar
13. Huang, G., Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708, 2017. Google Scholar
14. Zhang, Y., Y. Tian, Y. Kong, B. Zhong, and Y. Fu, "Residual dense network for image super-resolution," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2472-2481, 2018. Google Scholar
15. Li, Z., J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, "Feedback network for image super-resolution," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3867-3876, 2019. Google Scholar
16. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015. Google Scholar
17. Chen, K., J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Shi, W. Ouyang, et al. "Hybrid task cascade for instance segmentation," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4974-4983, 2019. Google Scholar
18. Cai, Z. and N. Vasconcelos, "Cascade r-cnn: Delving into high quality object detection," Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 6154-6162, 2018. Google Scholar
19. Hell, S. W. and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion uorescence microscopy," Optics Letters, Vol. 19, No. 11, 780-782, 1994. Google Scholar
20. Hess, S. T., T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophysical Journal, Vol. 91, No. 11, 4258-4272, 2006. Google Scholar
21. Rust, M. J., M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm)," Nature Methods, Vol. 3, No. 10, 793-796, 2006. Google Scholar
22. Gustafsson, M. G. L., "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of Microscopy, Vol. 198, No. 2, 82-87, 2000. Google Scholar
23. Weigert, M., U. Schmidt, T. Boothe, A. Muller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, et al. "Content-aware image restoration: Pushing the limits of fluorescence microscopy," Nature Methods, Vol. 15, No. 12, 1090-1097, 2018. Google Scholar
24. Wang, H., Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, and A. Ozcan, "Deep learning enables cross-modality superresolution in fluorescence microscopy," Nature Methods, Vol. 16, No. 1, 103-110, 2019. Google Scholar
25. Qiao, C., D. Li, Y. Guo, C. Liu, T. Jiang, Q. Dai, and D. Li, "Evaluation and development of deep neural networks for image super-resolution in optical microscopy," Nature Methods, Vol. 18, No. 2, 194-202, 2021. Google Scholar
26. Shi, W., J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1874-1883, 2016. Google Scholar
27. Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, "Mobilenets: Efficient convolutional neural networks for mobile vision applications,", arXiv preprint arXiv:1704.04861, 2017. Google Scholar
28. Ramachandran, P., B. Zoph, and Q. V. Le, "Searching for activation functions,", arXiv preprint arXiv:1710.05941, 2017. Google Scholar
29. Lin, T.-Y., P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2117-2125, 2017. Google Scholar
30. Allen, D. M., "Mean square error of prediction as a criterion for selecting variables," Technometrics, Vol. 13, No. 3, 469-475, 1971. Google Scholar
31. Wang, Z., A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," IEEE Transactions on Image Processing, Vol. 13, No. 4, 600-612, 2004. Google Scholar
32. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1-9, 2015. Google Scholar
33. Descloux, A., K. S. Gruβmayer, and A. Radenovic, "Parameter-free image resolution estimation based on decorrelation analysis," Nature Methods, Vol. 16, No. 9, 918-924, 2019. Google Scholar
34. Abramoff, M. D., P. J. Magalhaes, and S. J. Ram, "Image processing with imagej," Biophotonics International, Vol. 11, No. 7, 36-42, 2004. Google Scholar