1. Merewether, E., R. Fisher, and F. W. Smith, "On implementing a numeric Huygen's source scheme in a finite difference program to illuminate scattering bodies," IEEE Trans. Nucl. Sci., Vol. 27, No. 6, 1829-1833, Dec. 1980.
doi:10.1109/TNS.1980.4331114 Google Scholar
2. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2005.
3. Schneider, J. B., "Plane waves in FDTD simulations and a nearly perfect total-field/scattered-field boundary," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3280-3287, Dec. 2004.
doi:10.1109/TAP.2004.836403 Google Scholar
4. Hadi, M. F., "A versatile split-field 1-D propagator for perfect plane wave injection," IEEE Trans. Antennas Propag., Vol. 57, No. 9, 2691-2697, Sept. 2009.
doi:10.1109/TAP.2009.2027171 Google Scholar
5. Tan, T. and M. Potter, "Optimized analytic filed propagator (O-AFP) for plane wave injection in FDTD simulations," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 824-831, Mar. 2010.
doi:10.1109/TAP.2009.2039310 Google Scholar
6. Tan, T. and M. Potter, "FDTD discrete plane wave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2641-2648, Aug. 2010.
doi:10.1109/TAP.2010.2050446 Google Scholar
7. Anantha, V. and A. Taflove, "Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML," IEEE Trans. Antennas Propag., Vol. 50, No. 10, 1111-1119, Oct. 2002. Google Scholar
8. Capoglu, I. R. and G. S. Smith, "A total-field/scattered-field plane wave source for the FDTD analysis of layered media," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 158-169, Jan. 2008.
doi:10.1109/TAP.2007.913088 Google Scholar
9. Riley, D. J., J. M. Jin, Z. Lou, and L. E. R. Petersson, "Total-and scattered-field decomposition technique for the finite-element time-domain method," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 35-41, Jan. 2006.
doi:10.1109/TAP.2005.861524 Google Scholar
10. Yang, Q., B. Wei, L. Li, and D. Ge, "Implementation of corner-free truncation strategy in DGTD method," Waves Random Complex Media, Vol. 27, No. 2, 367-380, Apr. 2017.
doi:10.1080/17455030.2016.1249439 Google Scholar
11. Alvarez, J., L. D. Angulo, A. R. Bretones, and S. G. Garcia, "3-D Discontinuous Galerk in time-domain method for anisotropic materials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1182-1185, 2012.
doi:10.1109/LAWP.2012.2220952 Google Scholar
12. Bao, H., L. Kang, S. D. Campbell, and D. H. Werner, "PML implementation in a nonconforming mixed-element DGTD method for periodic structureanalysis," IEEE Trans. Antennas Propag., Vol. 67, No. 11, 6979-6988, Nov. 2019.
doi:10.1109/TAP.2019.2927663 Google Scholar
13. Alvarez, J., L. D. Angulo, M. R. Cabello, A. R. Bretones, and S. G. Garcia, "Ananalysis of the leap-frog discontinuous Galerkin method for Maxwell's equations," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 2, 197-207, Feb. 2014.
doi:10.1109/TMTT.2013.2295775 Google Scholar
14. Ren, Q., Q. Zhan, and Q. H. Liu, "An improved subdomain level nonconformal discontinuous galerkin time domain (DGTD) method for materials with full-tensor constitutive parameters," IEEE Photon. J., Vol. 9, No. 2, 1-13, Apr. 2017.
doi:10.1109/JPHOT.2017.2672644 Google Scholar
15. Dosopoulos, S. and J.-F. Lee, "Interior penalty discontinuous galerkin finite element method for the time-dependent first order maxwell's equations," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 4085-4090, Dec. 2010.
doi:10.1109/TAP.2010.2078445 Google Scholar
16. Li, P., Y. Shi, L. J. Jiang, and H. Bagci, "DGTD analysis of electromagnetic scattering from penetrable conductive objects with IBC," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5686-5697, Dec. 2015.
doi:10.1109/TAP.2015.2491963 Google Scholar
17. Li, P., L. J. Jiang, and H. Bagci, "Discontinuous galerkin time-domain modeling of graphene nanoribbon incorporating the spatial dispersion effects," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3590-3598, July 2018.
doi:10.1109/TAP.2018.2826567 Google Scholar
18. Yang, Q., B. Wei, L. Li, and D. Ge, "Simulation of electromagnetic waves in a magnetized cold plasma by the SO-DGTD method," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4151-4157, Aug. 2018.
doi:10.1109/TAP.2018.2835727 Google Scholar
19. Wang, P., Y. Shi, Z. G. Ban, S. C. Zhu, Q. Yang, and L. Li, "Penalty fac tor threshold and time step bound estimations for discontinuous Galerkin time-domain method based on Helmholtz equation," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7494-7506, Nov. 2020.
doi:10.1109/TAP.2020.2998585 Google Scholar
20. Chen, G., L. Zhao, W. Yu, S. Yan, K. Zhang, and J. Jin, "A general scheme for the discontinuous Galerkin time-domain modeling and s-parameter extraction of inhomogeneous waveports," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 4, 1701-1712, Apr. 2018.
doi:10.1109/TMTT.2017.2785800 Google Scholar
21. Zhang, T., H. Bao, D. Ding, and R. Chen, "Interior penalty DGTD method for solving wave equation in dispersive media described with GDM model," IEEE Trans. Antennas Propag., Vol. 69, No. 9, 6105-6110, Sept. 2021.
doi:10.1109/TAP.2021.3064222 Google Scholar
22. Gedney, S. D., C. Luo, J. A. Roden, R. D. Crawford, B. Guernsey, J. A. Miller, and E. W. Lucas, "A discontinuous galerkin finite element time domain method with PML," IEEE Antennas and Propagation Society International Symposium, 1-4, 2008. Google Scholar
23. Li, K., T. Huang, L. Li, S. Lanteri, L. Xu, and B. Li, "A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 242-254, Jan. 2018.
doi:10.1109/TAP.2017.2768562 Google Scholar
24. Sun, Q., R. Zhang, Q. Zhan, and Q. H. Lu, "3D implicit-explicit hybrid finite difference/spectral element/finite element time domain method without a Buffer zone," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5469-5476, Aug. 2019.
doi:10.1109/TAP.2019.2913740 Google Scholar
25. Zhan, Q., Y. Wang, Y. Fang, Q. Ren, S. Yang, W. Y. Yin, and Q. H. Liu, "An adaptive high-order transient algorithm to solve large-scale anisotropic Maxwell's equations," IEEE Trans. Antennas Propag., Vol. 70, No. 3, 2082-2092, Mar. 2022.
doi:10.1109/TAP.2021.3111639 Google Scholar
26. Sankaran, K., C. Fumeaux, and R. Vahldieck, "Cell-centered finite-volume-based perfectly matched layer for time-domain Maxwell system," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1269-1276, Mar. 2006.
doi:10.1109/TMTT.2006.869704 Google Scholar
27. Lee, J. F., R. Lee, and A. Cangellaris, "Time-domain finite-element methods," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 430-442, Mar. 1997.
doi:10.1109/8.558658 Google Scholar
28. Jin, J.-M., The Finite Element Method in Electromagnetics, 2nd Ed., Wiley, 2002.
29. Ren, Q., L. E. Tobon, Q. Sun, and Q. H. Liu, "A new 3-D nonspurious discontinuous galerkin spectral element time-domain (DG-SETD) method for Maxwell's equations," IEEE Trans. Antennas Propag., Vol. 63, No. 6, 2585-2594, Jun. 2015.
doi:10.1109/TAP.2015.2417891 Google Scholar
30. Chen, J., L. E. Tobon, M. Chai, J. A. Mix, and Q. H. Liu, "Efficient implicit-explicit time stepping scheme with domain decomposition for multiscale modeling of layered structures," IEEE Trans. Compon. Pack. Manuf. Technol., Vol. 1, No. 9, 1438-1446, Sept. 2011.
doi:10.1109/TCPMT.2011.2162726 Google Scholar
31. Sun, Q., Q. Zhan, Q. Ren, and Q. H. Liu, "Wave equation-based implicit subdomain DGTD method for modeling of electrically small problems," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1111-1119, Apr. 2017.
doi:10.1109/TMTT.2016.2640312 Google Scholar
32. Wen, P., Q. Ren, J. Chen, A. Chen, and Y. Zhang, "Improved memory-efficient subdomain level discontinuous galerkin time domain method for periodic/quasi-periodic structures," IEEE Trans. Antennas Propag., Vol. 68, No. 11, 7471-7479, Nov. 2020.
doi:10.1109/TAP.2020.2998215 Google Scholar
33. Zhou, Y., L. Shi, N. Liu, C. Zhu, H. Liu, and Q. H. Liu, "Spectral element method and domain decomposition for low-frequency fubsurface EM simulation," IEEE Geosci. Remote. Sens. Lett., Vol. 13, No. 4, 550-554, Apr. 2016.
doi:10.1109/LGRS.2016.2524558 Google Scholar
34. Zhan, Q., Q. Ren, Q. Sun, H. Chen, and Q. H. Liu, "Isotropic riemann solver for a nonconformal discontinuous galerkin pseudospectral time-domain algorithm," IEEE Trans. Geosci. Remote. Sens., Vol. 55, No. 3, 1254-1261, Mar. 2017.
doi:10.1109/TGRS.2016.2621124 Google Scholar
35. Zhou, Y., L. Shi, N. Liu, C. Zhu, H. Liu, and Q. H. Liu, "Spectral element method and domain decomposition for low-frequency subsurface EM simulation," IEEE Geosci. Remote Sens. Lett., Vol. 13, No. 4, 550-554, Apr. 2016.
doi:10.1109/LGRS.2016.2524558 Google Scholar
36. Shi, L., M. Zhuang, Y. Zhou, N. Liu, and Q. H. Liu, "Domain decomposition based on the spectral element method for frequency-domain computational elastodynamics," Sci. China Earth Sci., Vol. 64, 388-403, 2021.
doi:10.1007/s11430-020-9696-4 Google Scholar
37. Shi, L., Y. Zhou, J. Wang, M. Zhuang, N. Liu, and Q. H. Liu, "Spectral element method for elastic and acoustic waves in frequency domain," J. Comput. Phys., Vol. 327, No. 15, 19-38, Dec. 2016.
doi:10.1016/j.jcp.2016.09.036 Google Scholar
38. Zhan, Q., M. Zhuang, Y. Mao, and Q. H. Liu, "Unified Riemann solution for multi-physics coupling: Anisotropic poroelastic/elastic/fluid interfaces," Journal of Computational Physics, Vol. 402, No. 108961, 1-25, Feb. 2020. Google Scholar
39. Zeng, C., J. Xia, R. D. Miller, and G. P. Tsoflias, "Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with rayleigh waves," Geophys., Vol. 76, No. 3, T43-T52, May 2011.
doi:10.1190/1.3560019 Google Scholar
40. Meza-Fajardo, K. C. and A. S. Papageorgiou, "On the stability of a non-convolutional perfectly matched layer for isotropic elastic media," Soil Dyn. Earthq. Eng., Vol. 30, No. 3, 68-81, 2010.
doi:10.1016/j.soildyn.2009.09.002 Google Scholar
41. Zhan, Q., Y. Fang, M. Zhuang, M. Yuan, and Q. H. Liu, "Stabilized DG-PSTD method with nonconformal meshes for electromagnetic waves," IEEE Trans. Antennas Propag., Vol. 68, No. 6, 4714-4726, Jun. 2020.
doi:10.1109/TAP.2020.2970036 Google Scholar