1. Yan, Y., G. Xie, M. Lavery, et al. "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876
2. Liu, K., Y. Cheng, X. Li, and Y. Jiang, "Passive OAM-based radar imaging with single-in-multiple-out mode," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, 840-842, Sept. 2018.
doi:10.1109/LMWC.2018.2852146
3. Qin, F., L. Li, Y. Liu, W. Cheng, and H. Zhang, "A four-mode OAM antenna array with equal divergence angle," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1941-1945, Sept. 2019.
doi:10.1109/LAWP.2019.2934524
4. Efremidis, N. K. and D. N. Christodoulides, "Abruptly autofocusing waves," Optics Letters, Vol. 35, No. 23, 4045-4047, Dec. 2010.
doi:10.1364/OL.35.004045
5. Hwang, C.-Y., K.-Y. Kim, and B. Lee, "Dynamic control of circular Airy beams with linear optical potentials," IEEE Photonics Journal, Vol. 4, No. 1, 174-181, Feb. 2012.
doi:10.1109/JPHOT.2011.2182338
6. Mohanty, K., S. Mahajan, G. Pinton, M. Muller, and Y. Jing, "Observation of self-bending and focused ultrasound beams in the megahertz range," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol. 65, No. 8, 1460-1467, Aug. 2018.
doi:10.1109/TUFFC.2018.2841341
7. Panagiotopoulos, P., D. Papazoglou, A. Couairon, and S. Tzortzakis, "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets," Nature Commun., Vol. 4, No. 1, Oct. 2013, Art. no. 2622.
8. Zhang, P., J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, "Trapping and guiding microparticles with morphing autofocusing Airy beams," Optics Letters, Vol. 36, No. 15, 2883-2885, 2011.
doi:10.1364/OL.36.002883
9. Kadlimatti, R. and P. V. Parimi, "Millimeter-wave nondiffracting circular Airy OAM beams," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 260-269, Jan. 2019.
doi:10.1109/TAP.2018.2876713
10. Varzakas, P., "Optimal radio capacity for hybrid DS/SFH CDMA system in cellular radio," IEE Electronics Letters, Vol. 40, No. 7, 440-442, Apr. 2004.
doi:10.1049/el:20040242
11. Berry, M. V. and N. L. Balazs, "Nonspreading wave packets," Amer. J. Phys., Vol. 47, No. 3, 264-267, 1979.
doi:10.1119/1.11855
12. Siviloglou, G. A. and D. N. Christodoulides, "Accelerating nite energy Airy beams," Optics Letters, Vol. 32, No. 8, Apr. 15, 2007.
13. Niu, L., C. Liu, Q. Wu, K. Wang, Z. Yang, and J. Liu, "Generation of one-dimensional terahertz airy beam by three-dimensional printed cubic-phase plate," IEEE Photonics Journal, Vol. 9, No. 4, 1-7, Aug. 2017, Art no. 5900407, doi: 10.1109/JPHOT.2017.2712615.
doi:10.1109/JPHOT.2017.2712615
14. Wang, T., et al. "Dual-band terahertz auto-focusing Airy beam based on single-layer geometric metasurfaces with independent complex amplitude modulation at each wavelength," Adv. Theory Simul., Vol. 2, No. 7, Jul. 2019, Art. no. 1900071.
15. Miao, Z.-W., Z.-C. Hao, B.-B. Jin, and Z. N. Chen, "Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1503-1513, Mar. 2020.
doi:10.1109/TAP.2019.2925290
16. Yang, Z., G. Wen, D. Inserra, and Y. Huang, "Propagation range enhancement of truncated Airy beam with antenna array at microwave frequencies," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, May 2018.
17. Miao, Z.-W., Z.-C. Hao, and Q. Yuan, "Generation of one-dimensional Airy beams by a single-layer flexible metasurface at millimeter-wave band," Proc. Asia-Pacific Microw. Conf. (APMC), 645-647, Nov. 2018.
18. Penciu, R.-S., K. G. Makris, and N. K. Efremidis, "Nonparaxial abruptly autofocusing beams," Optics Letters, Vol. 41, No. 5, 1042-1045, Mar. 2016.
doi:10.1364/OL.41.001042
19. Liu, K., A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, "Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams," Optica, Vol. 3, No. 6, 605-608, Jun. 2016.
doi:10.1364/OPTICA.3.000605
20. Zhou, J., Y. Liu, Y. Ke, H. Luo, and S. Wen, "Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases," Opt. Lett., Vol. 40, No. 13, 3193-3196, 2015.
doi:10.1364/OL.40.003193
21. Huang, Y., X. Li, Z. Akram, H. Zhu, and Z. Qi, "Generation of millimeter-wave nondiffracting Airy OAM beam using a single-layer hexagonal lattice reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1093-1097, Jun. 2021.
doi:10.1109/LAWP.2021.3073144
22. Yu, S. X., L. Li, G. Shi, et al. "Generating multiple orbital angular momentum vortex beams using metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 2016.
23. Chiang, Y.-J. and T.-J. Yen, "A composite-metamaterial-based terahertz wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission," Appl. Phys. Lett., Vol. 102, 011129, 2013.
doi:10.1063/1.4774300
24. Wei, Z., Y. Cao, Y. Fan, et al. "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, 221907, 2011.
doi:10.1063/1.3664774
25. Huang, Y., et al. "Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7507-7516, Nov. 2020.
doi:10.1109/TAP.2020.2996826
26. Feng, Q. and Y. Lin, "Generation and measurement of a bessel vortex beam carrying multiple orbital-angular-momentum modes through a reflective metasurface in the RF domain," Phys. Rev. Applied, Vol. 15, No. 8, 064044, Jun. 2021.
doi:10.1103/PhysRevApplied.15.064044