Vol. 173
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-04-26
Millimeter-Wave Wideband High Effeciency Circular Airy OAM Multibeams with Multiplexing OAM Modes Based on Transmission Metasurfaces
By
Progress In Electromagnetics Research, Vol. 173, 151-159, 2022
Abstract
In this paper, wideband and high efficiency millimeter-wave circular Airy orbital angular momentum (OAM) beams, which have desired multiplexing OAM modes, directions and beam numbers, are generated by the proposed three metal layer transmission metasurfaces (TMSs) with size 12λ0×12λ0 based on the Airy-OAM phase superposition method. The measured results indicate non-diffracting propagation distance 31λ0, autofocusing property, high aperture efficiency 13.1%, and wideband 16.8% (28 GHz-33 GHz). The design method can be used for circular Airy OAM beam generation in point-to-point, point-to-multipoint wireless power transmission (WPT), and OAM mode multiplexing communication systems.
Citation
Hui-Fen Huang Hongming Huang , "Millimeter-Wave Wideband High Effeciency Circular Airy OAM Multibeams with Multiplexing OAM Modes Based on Transmission Metasurfaces," Progress In Electromagnetics Research, Vol. 173, 151-159, 2022.
doi:10.2528/PIER22022405
http://www.jpier.org/PIER/pier.php?paper=22022405
References

1. Yan, Y., et al., "High-capacity millimetre-wave communications with orbital angular momentum multiplexing," Nat. Commun., Vol. 5, 4876, 2014.
doi:10.1038/ncomms5876

2. Liu, K., Y. Cheng, X. Li, and Y. Jiang, "Passive OAM-based radar imaging with single-in-multiple-out mode," IEEE Microwave and Wireless Components Letters, Vol. 28, No. 9, 840-842, Sept. 2018.
doi:10.1109/LMWC.2018.2852146

3. Qin, F., L. Li, Y. Liu, W. Cheng, and H. Zhang, "A four-mode OAM antenna array with equal divergence angle," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 9, 1941-1945, Sept. 2019.
doi:10.1109/LAWP.2019.2934524

4. Efremidis, N. K. and D. N. Christodoulides, "Abruptly autofocusing waves," Optics Letters, Vol. 35, No. 23, 4045-4047, Dec. 2010.
doi:10.1364/OL.35.004045

5. Hwang, C.-Y., K.-Y. Kim, and B. Lee, "Dynamic control of circular Airy beams with linear optical potentials," IEEE Photonics Journal, Vol. 4, No. 1, 174-181, Feb. 2012.
doi:10.1109/JPHOT.2011.2182338

6. Mohanty, K., S. Mahajan, G. Pinton, M. Muller, and Y. Jing, "Observation of self-bending and focused ultrasound beams in the megahertz range," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, Vol. 65, No. 8, 1460-1467, Aug. 2018.
doi:10.1109/TUFFC.2018.2841341

7. Panagiotopoulos, P., D. Papazoglou, A. Couairon, and S. Tzortzakis, "Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets," Nature Commun., Vol. 4, No. 1, Oct. 2013, Art. no. 2622.

8. Zhang, P., J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, and Z. Chen, "Trapping and guiding microparticles with morphing autofocusing Airy beams," Optics Letters, Vol. 36, No. 15, 2883-2885, 2011.
doi:10.1364/OL.36.002883

9. Kadlimatti, R. and P. V. Parimi, "Millimeter-wave nondiffracting circular Airy OAM beams," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 260-269, Jan. 2019.
doi:10.1109/TAP.2018.2876713

10. Varzakas, P., "Optimal radio capacity for hybrid DS/SFH CDMA system in cellular radio," IEE Electronics Letters, Vol. 40, No. 7, 440-442, Apr. 2004.
doi:10.1049/el:20040242

11. Berry, M. V. and N. L. Balazs, "Nonspreading wave packets," Amer. J. Phys., Vol. 47, No. 3, 264-267, 1979.
doi:10.1119/1.11855

12. Siviloglou, G. A. and D. N. Christodoulides, "Accelerating nite energy Airy beams," Optics Letters, Vol. 32, No. 8, Apr. 15, 2007.

13. Niu, L., C. Liu, Q. Wu, K. Wang, Z. Yang, and J. Liu, "Generation of one-dimensional terahertz airy beam by three-dimensional printed cubic-phase plate," IEEE Photonics Journal, Vol. 9, No. 4, 1-7, Aug. 2017, Art no. 5900407, doi: 10.1109/JPHOT.2017.2712615.
doi:10.1109/JPHOT.2017.2712615

14. Wang, T., et al., "Dual-band terahertz auto-focusing Airy beam based on single-layer geometric metasurfaces with independent complex amplitude modulation at each wavelength," Adv. Theory Simul., Vol. 2, No. 7, Jul. 2019, Art. no. 1900071.

15. Miao, Z.-W., Z.-C. Hao, B.-B. Jin, and Z. N. Chen, "Low-profile 2-D THz Airy beam generator using the phase-only reflective metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1503-1513, Mar. 2020.
doi:10.1109/TAP.2019.2925290

16. Yang, Z., G. Wen, D. Inserra, and Y. Huang, "Propagation range enhancement of truncated Airy beam with antenna array at microwave frequencies," IEEE MTT-S Int. Microw. Symp. Dig., 1-3, May 2018.

17. Miao, Z.-W., Z.-C. Hao, and Q. Yuan, "Generation of one-dimensional Airy beams by a single-layer flexible metasurface at millimeter-wave band," Proc. Asia-Pacific Microw. Conf. (APMC), 645-647, Nov. 2018.

18. Penciu, R.-S., K. G. Makris, and N. K. Efremidis, "Nonparaxial abruptly autofocusing beams," Optics Letters, Vol. 41, No. 5, 1042-1045, Mar. 2016.
doi:10.1364/OL.41.001042

19. Liu, K., A. D. Koulouklidis, D. G. Papazoglou, S. Tzortzakis, and X.-C. Zhang, "Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams," Optica, Vol. 3, No. 6, 605-608, Jun. 2016.
doi:10.1364/OPTICA.3.000605

20. Zhou, J., Y. Liu, Y. Ke, H. Luo, and S. Wen, "Generation of Airy vortex and Airy vector beams based on the modulation of dynamic and geometric phases," Opt. Lett., Vol. 40, No. 13, 3193-3196, 2015.
doi:10.1364/OL.40.003193

21. Huang, Y., X. Li, Z. Akram, H. Zhu, and Z. Qi, "Generation of millimeter-wave nondiffracting Airy OAM beam using a single-layer hexagonal lattice reflectarray," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 6, 1093-1097, Jun. 2021.
doi:10.1109/LAWP.2021.3073144

22. Yu, S. X., et al., "Generating multiple orbital angular momentum vortex beams using metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, 2016.

23. Chiang, Y.-J. and T.-J. Yen, "A composite-metamaterial-based terahertz wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission," Appl. Phys. Lett., Vol. 102, 011129, 2013.
doi:10.1063/1.4774300

24. Wei, Z., et al., "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, 221907, 2011.
doi:10.1063/1.3664774

25. Huang, Y., et al., "Experimental demonstration of microwave two-dimensional Airy beam generation based on single-layer metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 11, 7507-7516, Nov. 2020.
doi:10.1109/TAP.2020.2996826

26. Feng, Q. and Y. Lin, "Generation and measurement of a bessel vortex beam carrying multiple orbital-angular-momentum modes through a reflective metasurface in the RF domain," Phys. Rev. Applied, Vol. 15, No. 8, 064044, Jun. 2021.
doi:10.1103/PhysRevApplied.15.064044