Vol. 173
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-04-13
VOC Detections with Optical Spectroscopy
By
Progress In Electromagnetics Research, Vol. 173, 71-92, 2022
Abstract
Volatile organic compounds (VOCs) have received increasing attentions recently. They are important for air quality monitoring, and biomarkers for diseases diagnosis. For the gas sensor community, various detection technologies were explored not only to detect total VOCs, but also aim for sensor selectivity. Commercially available VOC sensors, such as metal oxide based or photoionization detectors, are suitable for total VOCs but lack of selectivity. With the advancement of optical spectroscopy, it provides a good solution for specific VOC detections. In this review, various spectroscopy techniques are summarised focusing on increasing sensor sensitivity and selectivity. The techniques included in the paper are, non-dispersive infrared, multi-pass cell spectroscopy, cavity enhanced absorption photoacoustic spectroscopy and Fourier transform infrared spectroscopy. Each technique has its pros and cons, which are also discussed.
Citation
Yuxin Xing, Gaoxuan Wang, Tie Zhang, Fengjiao Shen, Lingshuo Meng, Lihui Wang, Fangmei Li, Yuqi Zhu, Yuhao Zheng, Nan He, and Sailing He, "VOC Detections with Optical Spectroscopy," Progress In Electromagnetics Research, Vol. 173, 71-92, 2022.
doi:10.2528/PIER22033004
References

1. Inamdar, A. A., S. Morath, and J. W. Bennett, "Fungal volatile organic compounds: More than just a funky smell?," Annual Review of Microbiology, Vol. 74, No. 1, 101-116, 2020, doi: 10.1146/annurev-micro-012420-080428.        Google Scholar

2. Sater, H. M., L. N. Bizzio, D. M. Tieman, and P. D. Muñoz, "A review of the fruit volatiles found in blueberry and other vaccinium species," Journal of Agricultural and Food Chemistry, Vol. 68, No. 21, 5777-5786, May 27, 2020, doi: 10.1021/acs.jafc.0c01445.        Google Scholar

3. Picazo-Aragonés, J., A. Terrab, and F. Balao, "Plant volatile organic compounds evolution: Transcriptional regulation, epigenetics and polyploidy," Int. J. Mol. Sci., Vol. 21, No. 23, November 25, 2020 (in English), doi: 10.3390/ijms21238956.        Google Scholar

4. Wang, M., C. Wang, S. Huang, and H. Yuan, "Study on asphalt volatile organic compounds emission reduction: A state-of-the-art review," Journal of Cleaner Production, Vol. 318, 128596, October 10, 2021, doi: https://doi.org/10.1016/j.jclepro.2021.128596.        Google Scholar

5. Nurmatov, U., N. Tagieva, S. Semple, G. Devereux, and A. Sheikh, "Volatile organic compounds and risk of asthma and allergy: A systematic review and meta-analysis of observational and interventional studies," Prim. Care. Respir. J., Vol. 22, No. 1, 9-15, March 2013 (in English), doi: 10.4104/pcrj.2013.00010.        Google Scholar

6. Hua, Q., Y. Zhu, and H. Liu, "Detection of volatile organic compounds in exhaled breath to screen lung cancer: A systematic review," Future Oncol., Vol. 14, No. 16, 1647-1662, July 2018 (in English), doi: 10.2217/fon-2017-0676.        Google Scholar

7. Novak, B. J., D. R. Blake, S. Meinardi, F. S. Rowland, A. Pontello, D. M. Cooper, and P. R. Galassetti, "Exhaled methyl nitrate as a noninvasive marker of hyperglycemia in type 1 diabetes," Proc. Natl. Acad. Sci. U S A, Vol. 104, No. 40, 15613-8, October 2, 2007 (in English), doi: 10.1073/pnas.0706533104.        Google Scholar

8. Ahmed, W. M., O. Lawal, T. M. Nijsen, R. Goodacre, and S. J. Fowler, "Exhaled volatile organic compounds of infection: A systematic review," ACS Infect. Dis., Vol. 3, No. 10, 695-710, October 13, 2017 (in English), doi: 10.1021/acsinfecdis.7b00088.        Google Scholar

9. Ashenhurst, J., Infrared Spectroscopy: A Quick Primer On Interpreting Spectra, 2016.

10. Hodgkinson, J. and R. P. Tatam, "Optical gas sensing: A review," Measurement Science and Technology, Vol. 24, No. 1, 012004, November 28, 2012, doi: 10.1088/0957-0233/24/1/012004.        Google Scholar

11. Krier, A., M. Yin, V. Smirnov, P. Batty, P. J. Carrington, V. Solovev, and V. Sherstnev, "The development of room temperature LEDs and lasers for the mid-infrared spectral range," Physica Status Solidi (A), Vol. 205, No. 1, 129-143, 2008, doi: https://doi.org/10.1002/pssa.200776833.        Google Scholar

12. Alexandrov, S., G. A. Gavrilov, A. A. Kapralov, S. A. Karandashev, B. A. Matveev, G. Y. Sotnikova, and N. M. Stus, "Portable optoelectronic gas sensors operating in the mid-IR spectral range (lambda = 35 μm)," Second International Conference on Lasers for Measurement and Information Transfer. SPIE, 2002.        Google Scholar

13. Haigh, M. K., G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, and T. Ashley, "Mid-infrared AlxIn1-xSb light-emitting diodes," Applied Physics Letters, Vol. 90, No. 23, 231116, 2007, doi: 10.1063/1.2745256.        Google Scholar

14. Liu, N., S. Zhou, L. Zhang, B. Yu, H. Fischer, W. Ren, and J. Li, "Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy," Laser Physics Letters, Vol. 15, No. 8, 085701, June 6, 2018, doi: 10.1088/1612-202x/aac356.        Google Scholar

15. Ciaffoni, L., G. Hancock, J. J. Harrison, J.-P. H. van Helden, C. E. Langley, R. Peverall, G. A. D. Ritchie, and S. Wood, "Demonstration of a mid-infrared cavity enhanced absorption spectrometer for breath acetone detection," Analytical Chemistry, Vol. 85, No. 2, 846-850, January 15, 2013, doi: 10.1021/ac3031465.        Google Scholar

16. Qu, Y., Q. Li, H. Gong, K. Du, S. Bai, D. Zhao, H. Ye, and M. Qiu, "Spatially and spectrally resolved narrowband optical absorber based on 2D grating nanostructures on metallic films," Advanced Optical Materials, Vol. 4, No. 3, 480-486, 2016, doi: https://doi.org/10.1002/adom.201500651.        Google Scholar

17. Kang, S., Z. Qian, V. Rajaram, S. D. Calisgan, A. Alù, and M. Rinaldi, "Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy," Advanced Optical Materials, Vol. 7, No. 2, 1801236, 2019, doi: https://doi.org/10.1002/adom.201801236.        Google Scholar

18. Wang, Z., J. K. Clark, Y.-L. Ho, S. Volz, H. Daiguji, and J.-J. Delaunay, "Ultranarrow and wavelength-tunable thermal emission in a hybrid metal-optical tamm state structure," ACS Photonics, Vol. 7, No. 6, 1569-1576, June 17, 2020, doi: 10.1021/acsphotonics.0c00439.        Google Scholar

19. Giannini, V., G. Vecchi, and J. Gómez Rivas, "Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas," Physical Review Letters, Vol. 105, No. 26, 266801, December 20, 2010, doi: 10.1103/PhysRevLett.105.266801.        Google Scholar

20. Gokhale, V. J., P. D. Myers, and M. Rais-Zadeh, "Subwavelength plasmonic absorbers for spectrally selective resonant infrared detectors," SENSORS, 2014 IEEE, 982-985, November 2-5, 2014, doi: 10.1109/ICSENS.2014.6985167.        Google Scholar

21. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, No. 1, 517, November 1, 2011, doi: 10.1038/ncomms1528.        Google Scholar

22. Xing, Y., B. Urasinska-Wojcik, and J. W. Gardner, "Plasmonic enhanced CMOS non-dispersive infrared gas sensor for acetone and ammonia detection," 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1-5, May 14-17, 2018, doi: 10.1109/I2MTC.2018.8409745.        Google Scholar

23. Su, P., Z. Han, D. Kita, P. Becla, H. Lin, S. Deckoff-Jones, K. Richardson, L. C. Kimerling, J. Hu, and A. Agarwal, "Monolithic on-chip mid-IR methane gas sensor with waveguide-integrated detector," Applied Physics Letters, Vol. 114, No. 5, 051103, 2019, doi: 10.1063/1.5053599.        Google Scholar

24. Jin, T., J. Zhou, H.-Y. G. Lin, and P. T. Lin, "Mid-infrared chalcogenide waveguides for real-time and nondestructive volatile organic compound detection," Analytical Chemistry, Vol. 91, No. 1, 817-822, January 2, 2019, doi: 10.1021/acs.analchem.8b03004.        Google Scholar

25. Park, J. H., S. E. Han, P. Nagpal, and D. J. Norris, "Observation of thermal beaming from tungsten and Molybdenum Bull's eyes," ACS Photonics, Vol. 3, No. 3, 494-500, March 16, 2016, doi: 10.1021/acsphotonics.6b00022.        Google Scholar

26. Herriott, D. R., H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt., Vol. 3, 523-526, 1964.        Google Scholar

27. McManus, J. B., P. L. Kebabian, and W. S. Zahniser, "Astigmatic mirror multipass absorption cells for long-path-length spectroscopy," Applied Optics, Vol. 34, No. 18, 3336-3348, June 1995, doi: 10.1364/ao.34.003336.        Google Scholar

28. Ozharar, S. and A. Sennaroglu, "Mirrors with designed spherical aberration for multi-pass cavities," Opt. Lett., Vol. 42, No. 10, 1935-1938, May 2017, doi: 10.1364/ol.42.001935.        Google Scholar

29. Cao, Y. N., G. Cheng, X. Tian, G.-S. Wang, Y. Cao, C.-Y. Sun, Y.-L. Zhang, G.-X. Cheng, and H.-T. Yang, "The design and simulation of a novel ring multi-pass optical cell for detection of environmental trace gas," Optik, Vol. 227, Art No. 166095, February 2021, doi: 10.1016/j.ijleo.2020.166095.        Google Scholar

30. Nadeem, F., J. Mandon, A. Khodabakhsh, S. M. Cristescu, and F. J. M. Harren, "Sensitive spectroscopy of acetone using a widely tunable external-cavity quantum cascade laser," Sensors, Vol. 18, No. 7, 2050, 2018, online available: https://www.mdpi.com/1424-8220/18/7/2050.        Google Scholar

31. Xia, J., F. Zhu, A. A. Kolomenskii, J. Bounds, S. Zhang, M. Amani, L. J. Fernyhough, and H. A. Schuessler, "Sensitive acetone detection with a mid-IR interband cascade laser and wavelength modulation spectroscopy," OSA Continuum, Vol. 2, No. 3, 640-654, March 15, 2019, doi: 10.1364/OSAC.2.000640.        Google Scholar

32. Schwarm, K. K., C. L. Strand, V. A. Miller, and R. M. Spearrin, "Calibration-free breath acetone sensor with interference correction based on wavelength modulation spectroscopy near 8.2 μm," Applied Physics B, Vol. 126, No. 1, 9, December 9, 2019, doi: 10.1007/s00340-019-7358-x.        Google Scholar

33. Lindley, R. E., M. Pradhan, and A. J. Orr-Ewing, "Measuring acetylene concentrations using a frequency chirped continuous wave diode laser operating in the near infrared," Analyst, Vol. 131, No. 6, 731-738, 2006, doi: 10.1039/B600506C.        Google Scholar

34. Zou, M., Z. Yang, L. Sun, and X. Ming, "Acetylene sensing system based on wavelength modulation spectroscopy using a triple-row circular multi-pass cell," Opt. Express, Vol. 28, No. 8, 11573-11582, April 13, 2020, doi: 10.1364/OE.388343.        Google Scholar

35. Shen, F., J. Akil, G. Wang, C. Poupin, R. Cousin, S. Siffert, E. Fertein, T.-N. Ba, and W. Chen, "Real-time monitoring of N2O production in a catalytic reaction process using mid-infrared quantum cascade laser," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 221, 1-7, December 1, 2018, doi: https://doi.org/10.1016/j.jqsrt.2018.09.022.        Google Scholar

36. He, H., S. Gao, J. Hu, T. Zhang, T. Wu, Z. Qiu, C. Zhang, Y. Sun, and S. He, "In-situ testing of methane emissions from landfills using laser absorption spectroscopy," Applied Sciences, Vol. 11, No. 5, 2117, 2021, online available: https://www.mdpi.com/2076-3417/11/5/2117.        Google Scholar

37. Herbelin, J. M., J. A. McKay, M. A. Kwok, R. H. Ueunten, D. S. Urevig, D. J. Spencer, and D. J. Benard, "Sensitive measurement of photon lifetime and true reflectances in an optical cavity by a phase-shift method," Appl. Opt., Vol. 19, No. 1, 144-147, January 1, 1980, doi: 10.1364/AO.19.000144.        Google Scholar

38. Anderson, D. Z., J. C. Frisch, and C. S. Masser, "Mirror reflectometer based on optical cavity decay time," Appl. Opt., Vol. 23, No. 8, 1238, April 15, 1984 (in English), doi: 10.1364/ao.23.001238.        Google Scholar

39. O'Keefe, A. and D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Review of Scientific Instruments, Vol. 59, No. 12, 2544-2551, 1988, doi: 10.1063/1.1139895.        Google Scholar

40. Song, S., "Continuous-wave cavity ring-down spectroscopy and detection of trace methane," Fine Mechanics and Physics, University of Chinese Academy of Sciences, 2019.        Google Scholar

41. Parkes, A. M., R. E. Lindley, and A. J. Orr-Ewing, "Combining preconcentration of air samples with cavity ring-down spectroscopy for detection of trace volatile organic compounds in the atmosphere," Analytical Chemistry, Vol. 76, No. 24, 7329-7335, December 1, 2004, doi: 10.1021/ac048727j.        Google Scholar

42. Pradhan, M., R. E. Lindley, R. Grilli, I. R. White, D. Martin, and A. J. Orr-Ewing, "Trace detection of C2H2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration," Applied Physics B, Vol. 90, No. 1, 1-9, 2008, doi: 10.1007/s00340-007-2833-1.        Google Scholar

43. Wang, C. and A. B. Surampudi, "An acetone breath analyzer using cavity ringdown spectroscopy: An initial test with human subjects under various situations," Measurement Science and Technology, Vol. 19, No. 10, 105604, August 27, 2008, doi: 10.1088/0957-0233/19/10/105604.        Google Scholar

44. Bicer, A., J. Bounds, F. Zhu, A. A. Kolomenskii, N. Kaya, E. Aluauee, M. Amani, and H. A. Schuessler, "Sensitive spectroscopic analysis of biomarkers in exhaled breath," International Journal of Thermophysics, Vol. 39, No. 6, 69, April 19, 2018, doi: 10.1007/s10765-018-2389-9.        Google Scholar

45. Sadiek, I., Q. Shi, D. W. R. Wallace, and G. Friedrichs, "Quantitative mid-infrared cavity ringdown detection of methyl iodide for monitoring applications," Analytical Chemistry, Vol. 89, No. 16, 8445-8452, August 15, 2017, doi: 10.1021/acs.analchem.7b01970.        Google Scholar

46. Wang, Z., M. Sun, and C. Wang, "Detection of melanoma cancer biomarker dimethyl disulfide using cavity ringdown spectroscopy at 266 nm," Appl. Spectrosc., Vol. 70, No. 6, 1080-5, June 2016 (in English), doi: 10.1177/0003702816641575.        Google Scholar

47. Parkes, A. M., B. L. Fawcett, R. E. Austin, S. Nakamichi, D. E. Shallcross, and A. J. Orr-Ewing, "Trace detection of volatile organic compounds by diode laser cavity ring-down spectroscopy," Analyst, Vol. 128, No. 7, 960-965, 2003, doi: 10.1039/B303834C.        Google Scholar

48. Vaittinen, O., F. M. Schmidt, M. Metsala, and L. Halonen, "Exhaled breath biomonitoring using laser spectroscopy," Current Analytical Chemistry, Vol. 9, No. 3, 463-475, 2013, doi: http://dx.doi.org/10.2174/1573411011309030016.        Google Scholar

49. Schmidt, F. M., O. Vaittinen, M. Metsälä, P. Kraus, and L. Halonen, "Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy," Applied Physics B: Lasers and Optics, Vol. 101, 671-682, November 1, 2010, doi: 10.1007/s00340-010-4027-5.        Google Scholar

50. Thalman, R. and R. Volkamer, "Inherent calibration of a blue LED-CE-DOAS instrument to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and aerosol extinction in open cavity mode," Atmos. Meas. Tech., Vol. 3, No. 6, 1797-1814, 2010, doi: 10.5194/amt-3-1797-2010.        Google Scholar

51. Ball, S. M., J. M. Langridge, and R. L. Jones, "Broadband cavity enhanced absorption spectroscopy using light emitting diodes," Chemical Physics Letters, Vol. 398, No. 1, 68-74, November 1, 2004, doi: https://doi.org/10.1016/j.cplett.2004.08.144.        Google Scholar

52. Fiedler, S. E., A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy of liquids," Review of Scientific Instruments, Vol. 76, No. 2, 023107, 2005, doi: 10.1063/1.1841872.        Google Scholar

53. Fiedler, S. E., A. Hese, and A. A. Ruth, "Incoherent broad-band cavity-enhanced absorption spectroscopy," Chemical Physics Letters, Vol. 371, 284-294, 2003.        Google Scholar

54. Islam, M., L. Ciaffoni, G. Hancock, and G. A. D. Ritchie, "Demonstration of a novel laser-driven light source for broadband spectroscopy between 170 nm and 2.1 μm," Analyst, Vol. 138, No. 17, 4741-4745, 2013, doi: 10.1039/C3AN01020A.        Google Scholar

55. Seetohul, L. N., Z. Ali, and M. Islam, "Liquid-phase broadband cavity enhanced absorption spectroscopy (BBCEAS) studies in a 20 cm cell," Analyst, Vol. 134, No. 9, 1887-1895, 2009, doi: 10.1039/B907316G.        Google Scholar

56. Wu, T., W. Chen, E. Fertein, F. Cazier, D. Dewaele, and X. Gao, "Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air," Applied Physics B, Vol. 106, No. 2, 501-509, February 1, 2012, doi: 10.1007/s00340-011-4818-3.        Google Scholar

57. Denzer, W., M. L. Hamilton, G. Hancock, M. Islam, C. E. Langley, R. Peverall, and G. A. D. Ritchie, "Near-infrared broad-band cavity enhanced absorption spectroscopy using a superluminescent light emitting diode," Analyst, Vol. 134, No. 11, 2220-2223, 2009, doi: 10.1039/B916807A.        Google Scholar

58. Chandran, S. and R. Varma, "Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane," Spectrochim Acta A. Mol. Biomol. Spectrosc., Vol. 153, 704-8, January 15, 2016 (in English), doi: 10.1016/j.saa.2015.09.030.        Google Scholar

59. Denzer, W., G. Hancock, M. Islam, C. E. Langley, R. Peverall, G. A. D. Ritchie, and D. Taylor, "Trace species detection in the near infrared using Fourier transform broadband cavity enhanced absorption spectroscopy: Initial studies on potential breath analytes," Analyst, Vol. 136, No. 4, 801-806, 2011, doi: 10.1039/C0AN00462F.        Google Scholar

60. Amiot, C., A. Aalto, P. Ryczkowski, J. Toivonen, and G. Genty, "Cavity enhanced absorption spectroscopy in the mid-infrared using a supercontinuum source," Applied Physics Letters, Vol. 111, No. 6, 061103, 2017, doi: 10.1063/1.4985263.        Google Scholar

61. Fang, B., W. Zhao, X. Xu, J. Zhou, X. Ma, S. Wang, W. Zhang, D. S. Venables, and W. Chen, "Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: Application to real-time, in situ monitoring of glyoxal and nitrogen dioxide," Opt. Express, Vol. 25, No. 22, 26910-26922, October 30, 2017, doi: 10.1364/OE.25.026910.        Google Scholar

62. Chen, J., J. C. Wenger, and D. S. Venables, "Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity," The Journal of Physical Chemistry A, Vol. 115, No. 44, 12235-12242, November 10, 2011, doi: 10.1021/jp206929r.        Google Scholar

63. Yi, H., et al. "Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM," Atmos. Meas. Tech., Vol. 14, No. 8, 5701-5715, 2021, doi: 10.5194/amt-14-5701-2021.        Google Scholar

64. Meng, L., G. Wang, P. Augustin, M. Fourmentin, Q. Gou, E. Fertein, T. N. Ba, C. Coeur, A. Tomas, and W. Chen, "Incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS)-based strategy for direct measurement of aerosol extinction in a lidar blind zone," Opt. Lett., Vol. 45, No. 7, 1611-1614, April 1, 2020, doi: 10.1364/OL.389093.        Google Scholar

65. Miklós, A., P. Hess, and Z. Bozóki, "Application of acoustic resonators in photoacoustic trace gas analysis and metrology," Review of Scientific Instruments, Vol. 72, No. 4, 1937-1955, 2001, doi: 10.1063/1.1353198.        Google Scholar

66. Dumitras, D. C., M. Petrus, A.-M. Bratu, and C. Popa, "Applications of near infrared photoacoustic spectroscopy for analysis of human respiration: A review," Molecules, Vol. 25, No. 7, 1728, 2020, online available: https://www.mdpi.com/1420-3049/25/7/1728.        Google Scholar

67. Harren, F., J. Mandon, and S. M. Cristescu, Photoacoustic Spectroscopy in Trace Gas Monitoring, 2012.

68. Li, J., W. Chen, and B. Yu, "Recent progress on infrared photoacoustic spectroscopy techniques," Applied Spectroscopy Reviews, Vol. 46, No. 6, 440-471, August 1, 2011, doi: 10.1080/05704928.2011.570835.        Google Scholar

69. Patimisco, P., G. Scamarcio, F. Tittel, and V. Spagnolo, "Quartz-enhanced photoacoustic spectroscopy: A review," Sensors (Basel, Switzerland), Vol. 14, 6165-206, April 1, 2014, doi: 10.3390/s140406165.        Google Scholar

70. Popa, C. L., A. M. Bratu, and M. Petrus, "A comparative photoacoustic study of multi gases from human respiration: Mouth breathing vs. nasal breathing," Microchemical Journal, 2018.        Google Scholar

71. Mitrayana, D., K. Apriyanto, and M. Satriawan, "CO2 laser photoacoustic spectrometer for measuring acetone in the breath of lung cancer patients," Biosensors, Vol. 10, No. 6, 55, 2020, online available: https://www.mdpi.com/2079-6374/10/6/55.        Google Scholar

72. Mohebbifar, M. R., "High-sensitivity detection and quantification of CHCl3 vapors in various gas environments based on the photoacoustic spectroscopy," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2234-2241, 2019, doi: https://doi.org/10.1002/mop.31880.        Google Scholar

73. Wang, G., T. Zhang, Y. Jiang, and S. He, "Compact photoacoustic spectrophone for simultaneously monitoring the concentrations of dichloromethane and trichloromethane with a single acoustic resonator," Opt Express, Vol. 30, No. 5, 7053-7067, February 28, 2022 (in English), doi: 10.1364/oe.450685.        Google Scholar

74. Zhang, T., Y. Xing, G. Wang, and S. He, "High sensitivity continuous monitoring of chloroform gas by using wavelength modulation photoacoustic spectroscopy in the near-infrared range," Applied Sciences, Vol. 11, No. 15, 6992, 2021, online available: https://www.mdpi.com/2076-3417/11/15/6992.        Google Scholar

75. Ma, Y., R. Lewicki, M. Razeghi, and F. K. Tittel, "QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL," Opt. Express, Vol. 21, No. 1, 1008-1019, January 14, 2013, doi: 10.1364/OE.21.001008.        Google Scholar

76. Ayache, D., W. Trzpil, R. Rousseau, K. Kinjalk, R. Teissier, A. N. Baranov, M. Bahriz, and A. Vicet, "Benzene sensing by quartz enhanced photoacoustic spectroscopy at 14.85 μm," Opt. Express, Vol. 30, No. 4, 5531-5539, February 14, 2022, doi: 10.1364/OE.447197.        Google Scholar

77. Ma, Y., Y. He, Y. Tong, X. Yu, and F. K. Tittel, "Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection," Opt. Express, Vol. 26, No. 24, 32103-32110, November 26, 2018, doi: 10.1364/OE.26.032103.        Google Scholar

78. Lang, Z., S. Qiao, and Y. Ma, "Acoustic microresonator based in-plane quartz-enhanced photoacoustic spectroscopy sensor with a line interaction mode," Opt. Lett., Vol. 47, No. 6, 1295-1298, March 15, 2022, doi: 10.1364/OL.452085.        Google Scholar

79. Liu, X. and Y. Ma, "Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell (invited)," Chinese Optics Letters, Vol. 20, No. 3, 031201, 2022, doi: 10.3788/col202220.031201.        Google Scholar

80. Tomberg, T., M. Vainio, T. Hieta, and L. Halonen, "Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy," Scientific Reports, Vol. 8, No. 1, 1848, January 30, 2018, doi: 10.1038/s41598-018-20087-9.        Google Scholar

81. Karhu, J., H. Philip, A. Baranov, R. Teissier, and T. Hieta, "Sub-ppb detection of benzene using cantilever-enhanced photoacoustic spectroscopy with a long-wavelength infrared quantum cascade laser," Opt. Lett., Vol. 45, No. 21, 5962-5965, November 1, 2020, doi: 10.1364/OL.405402.        Google Scholar

82. Hirschmann, C. B., N. S. Koivikko, J. Raittila, J. Tenhunen, S. Ojala, K. Rahkamaa-Tolonen, R. Marbach, S. Hirschmann, and R. L. Keiski, "FT-IR-cPAS{new photoacoustic measurement technique for analysis of hot gases: A case study on VOCs," Sensors (Basel), Vol. 11, No. 5, 5270-5289, 2011 (in English), doi: 10.3390/s110505270.        Google Scholar

83. Saalberg, Y., H. Bruhns, and M. Wolff, "Photoacoustic spectroscopy for the determination of lung cancer biomarkers - A preliminary investigation," Sensors, Vol. 17, No. 1, 210, 2017, online available: https://www.mdpi.com/1424-8220/17/1/210.        Google Scholar

84. Bacsik, Z., J. Mink, and G. Keresztury, "FTIR spectroscopy of the atmosphere. I. Principles and methods," Applied Spectroscopy Reviews, Vol. 39, No. 3, 295-363, December 31, 2004, doi: 10.1081/ASR-200030192.        Google Scholar

85. Lechner, B., H. Paar, and P. Sturm, "Measurement of VOCs in vehicle exhaust by extractive FTIR spectroscopy," Europto Remote Sensing. SPIE, 2001.        Google Scholar

86. Cantu, A., G. Pophal, S. Hall, and C. T. Laush, "A unique application of an extractive FTIR ambient air monitoring system for the simultaneous detection of multiple-ppb-level VOCs," Applied Physics B: Lasers and Optics, Vol. 67, 493-496, October 1, 1998, doi: 10.1007/s003400050534.        Google Scholar

87. Fathy, A., Y. M. Sabry, M. Amr, et al. "MEMS FTIR optical spectrometer enables detection of volatile organic compounds (VOCs) in part-per-billion (ppb) range for air quality monitoring," SPIE OPTO, 2019.        Google Scholar

88. Cheng, J., Y. Zhang, T. Wang, P. Norris, W.-Y. Chen, and W.-P. Pan, "Thermogravimetric-fourier transform infrared spectroscopy-gas chromatography/mass spectrometry study of volatile organic compounds from coal pyrolysis," Energy & Fuels, Vol. 31, No. 7, 7042-7051, July 20, 2017, doi: 10.1021/acs.energyfuels.7b01073.        Google Scholar

89. Flores, E., R. Basaldud, and M. Grutter, "Open-path FTIR spectroscopic studies of trace gases over mexico city," Journal of Extension, 2003.        Google Scholar

90. Hong, D. W., G. S. Heo, J. S. Han, and S. Y. Cho, "Application of the open path FTIR with COL1SB to measurements of ozone and VOCs in the urban area," Atmospheric Environment, Vol. 38, No. 33, 5567-5576, October 1, 2004, doi: https://doi.org/10.1016/j.atmosenv.2004.06.033.        Google Scholar

91. Lin, C., N. Liou, and E. Sun, "Applications of open-path fourier transform infrared for identification of volatile organic compound pollution sources and characterization of source emission behaviors," Journal of the Air & Waste Management Association, Vol. 58, No. 6, 821-828, June 1, 2008, doi: 10.3155/1047-3289.58.6.821.        Google Scholar

92. Russwurm, G. M., R. H. Kagann, O. A. Simpson, W. A. McClenny, and W. F. Herget, "Long-path FTIR measurements of volatile organic compounds in an industrial setting," Journal of the Air & Waste Management Association, Vol. 41, No. 8, 1062-1066, 1991.        Google Scholar

93. Sedlmaier, A., K. Schafer, K. H. Becker, K. Brockmann, J. Heland, R. Kurtenbach, J. Lorzer, and P. Wiesen, "Determination of VOCs in traffic exhaust by FTIR absorption spectrometry," Industrial Lasers and Inspection (EUROPTO Series). SPIE, 1999.        Google Scholar

94. Li, Y., J. Wang, Z. Huang, and X. Zhou, "Mapping air contaminant concentrations using remote sensing FTIR," Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, Vol. 38, No. 2, 429-38, February 2003 (in English), doi: 10.1081/ese120016905.        Google Scholar

95. Tong, J.-J., W.-Q. Liu, M.-G. Gao, Z.-M. Liu, L. Xu, X.-L. Wei, and L. Jin, "Measurement and study of partial VOCs based on open path FTIR," 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment, Vol. 7656, 76562B, Y. Zhang, J. Sasián, L. Xiang, and S. To, editors, October 1, 2010, doi: 10.1117/12.863726, online available: https://ui.adsabs.harvard.edu/abs/2010SPIE.7656E.2BT.        Google Scholar

96. Han, X., L. Jin, M. Gao, S. Ye, L. Xu, Y. Li, R. Hu, M. Feng, and W. Liu, "The study of VOCs emission monitoring technology based on SOF-FTIR," Light, Energy and the Environment 2015, paper EW2A.5, OSA Technical Digest (online) (Optica Publishing Group), 2015, https://doi.org/10.1364/EE.2015.EW2A.5.        Google Scholar

97. Buszewski, B., M. Kesy, T. Ligor, and A. Amann, "Human exhaled air analytics: biomarkers of diseases," Biomed Chromatogr, Vol. 21, No. 6, 553-566, June 2007 (in English), doi: 10.1002/bmc.835.        Google Scholar

98. Tomberg, T., N. Vuorio, T. Hieta, et al. "Broadband laser-based infrared detector for gas chromatography," Analytical Chemistry, Vol. 92, No. 21, 14582-14588, November 3, 2020, doi: 10.1021/acs.analchem.0c02887.        Google Scholar

99. Zare, R. N., D. S. Kuramoto, C. Haase, S. M. Tan, E. R. Crosson, and N. M. Saad, "High-precision optical measurements of 13C/12C isotope ratios in organic compounds at natural abundance," Proc. Natl. Acad. Sci. USA, Vol. 106, No. 27, 10928-32, July 7, 2009 (in English), doi: 10.1073/pnas.0904230106.        Google Scholar