1. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004. Google Scholar
2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000. Google Scholar
3. Tsakmakidis, K. L., A. D. Boardman, and O. Hess, "Trapped rainbow storage of light in metamaterials," Nat., Vol. 450, 397-401, 2007. Google Scholar
4. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, 946-950, 2007. Google Scholar
5. Jiang, W. X., J. Y. Chin, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009. Google Scholar
6. Iyer, A. K., D. Pratap, J. G. Pollock, and S. A. Ramakrishna, "Anisotropic metamaterial optical fibers," Opt. Express, Vol. 23, 9074-9085, 2015. Google Scholar
7. Zeng, Y., H. Qian, M. J. Rozin, Z. Liu, and A. R. Tao, "Enhanced second harmonic generation in double-resonance colloidal metasurfaces," Adv. Funct. Mater., Vol. 28, 1803019, 2018. Google Scholar
8. Qian, H., "Efficient light generation from enhanced inelastic electron tunnelling," Nat. Photonics, Vol. 12, 485-488, 2018. Google Scholar
9. Lu, D., H. Qian, K. Wang, H. Shen, F. Wei, Y. Jiang, E. E. Fullerton, P. K. L. Yu, and Z. Liu, "Nanostructuring multilayer hyperbolic metamaterials for ultrafast and bright Green InGaN quantum wells," Adv. Mater., Vol. 30, 1706411, 2018. Google Scholar
10. Ghobadi, A., H. Hajian, B. Butun, and E. Ozbay, "Strong light-matter interaction in lithography-free planar metamaterial perfect absorbers," ACS Photonics, Vol. 5, 4203-4221, 2018. Google Scholar
11. Galfsky, T., J. Gu, E. E. Narimanov, and V. M. Menon, "Photonic hypercrystals for control of light-matter interactions," Proc. Natl. Acad. Sci. U.S.A., Vol. 114, 5125-5139, 2017. Google Scholar
12. Krishnamoorthy, H. N. S., Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, "Topological transitions in metamaterials," Science, Vol. 336, 205-209, 2012. Google Scholar
13. Banerji, S., M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, and R. Menon, "Imaging with flat optics: Metalenses or diffractive lenses?," Opt., Vol. 6, No. 6, 805-810, 2019. Google Scholar
14. Lu, D. and Z. Liu, "Hyperlenses and metalenses for far-field super-resolution imaging," Nat. Commun., Vol. 3, 1-9, 2012. Google Scholar
15. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007. Google Scholar
16. Ma, Q., H. Qian, S. Montoya, et al. "Experimental demonstration of hyperbolic metamaterial assisted illumination nanoscopy," ACS Nano, Vol. 12, 11316-11322, 2018. Google Scholar
17. Smolyaninov, I. I., Y. J. Hung, and C. C. Davis, "Imaging and focusing properties of plasmonic metamaterial devices," Phys. Rev. B, Vol. 76, 205424, 2007. Google Scholar
18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006. Google Scholar
19. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photonics, Vol. 1, 224-227, 2007. Google Scholar
20. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006. Google Scholar
21. Fang, Y. and M. Sun, "Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits," Light Sci. Appl., Vol. 4, e294-e294, 2015. Google Scholar
22. Liu, Y., J. Zhang, H. Liu, S. Wang, and L. M. Peng, "Electrically driven monolithic subwavelength plasmonic interconnect circuits," Sci. Adv., Vol. 3, e1701456, 2017. Google Scholar
23. Navon, N., S. Nascimbène, F. Chevy, and C. Salomon, "Performing mathematical operations with metamaterials," Science, Vol. 343, 729-732, 2014. Google Scholar
24. Zangeneh-Nejad, F., D. L. Sounas, A. Alù, and R. Fleury, "Analogue computing with metamaterials," Nat. Rev. Mater., Vol. 6, 207-225, 2020. Google Scholar
25. Cheng, K., Y. Fan, W. Zhang, Y. Gong, S. Fei, and H. Li, "Optical realization of wave-based analog computing with metamaterials," Appl. Sci., Vol. 11, 141, 2020. Google Scholar
26. Zhou, J., S. Liu, H. Qian, et al. "Metasurface enabled quantum edge detection," Sci. Adv., Vol. 6, 4385-4401, 2020. Google Scholar
27. Zhou, J., H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo, S. Wen, S. Chen, and Z. Liu, "Two-dimensional optical spatial differentiation and high-contrast imaging," Natl. Sci. Rev., Vol. 8, No. 6, nwaa176, 2021. Google Scholar
28. Zhou, J., H. Qian, C.-F. Chen, and Z. Liu, "Optical edge detection based on high-efficiency dielectric metasurface," Proc. Natl. Acad. Sci., Vol. 166, 11137-11140, 2019. Google Scholar
29. Zhou, J., H. Qian, H. Luo, S. Wen, and Z. Liu, "A spin controlled wavefront shaping metasurface with low dispersion in visible frequencies," Nanoscale, Vol. 11, 17111-17119, 2019. Google Scholar
30. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018. Google Scholar
31. Kiarashinejad, Y., S. Abdollahramezani, M. Zandehshahvar, O. Hemmatyar, and A. Adibi, "Deep learning reveals underlying physics of light-matter interactions in nanophotonic devices," Adv. Theory Simulations, Vol. 2, 1900088, 2019. Google Scholar
32. Malkiel, I., M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, "Plasmonic nanostructure design and characterization via deep learning," Light Sci. Appl., Vol. 7, 1-8, 2018. Google Scholar
33. An, S., C. Fowler, B. Zheng, M. Y. Shalaginov, et al. "A deep learning approach for objective-driven all-dielectric metasurface design," ACS Photonics, Vol. 6, 3196-3207, 2019. Google Scholar
34. Qiu, T., X. Shi, J. Wang, Y. Li, S. Qu, Q. Cheng, T. Cui, and S. Sui, "Deep learning: A rapid and efficient route to automatic metasurface design," Adv. Sci., Vol. 6, 1900128, 2019. Google Scholar
35. Kiarashinejad, Y., M. Zandehshahvar, S. Abdollahramezani, O. Hemmatyar, R. Pourabolghasem, and A. Adibi, "Knowledge discovery in nanophotonics using geometric deep learning," Adv. Intell. Syst., Vol. 2, 1900132, 2020. Google Scholar
36. Campione, S., S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, "Epsilon-near-zero modes for tailored light-matter interaction," Phys. Rev. Appl., Vol. 4, 044011, 2015. Google Scholar
37. Niu, X., X. Hu, S. Chu, and Q. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018. Google Scholar
38. Son, H. and K. Oh, "Light propagation analysis using a translated plane angular spectrum method with the oblique plane wave incidence," J. Opt. Soc. Am. A, Vol. 32, 949, 2015. Google Scholar
39. Wang, Z., C. Chen, K. Wu, H. Chong, and H. Ye, "Transparent conductive oxides and their applications in near infrared plasmonics," Phys. Status Solidi, Vol. 216, 1700794, 2019. Google Scholar