1. Park, J., M. Jeong, N. Hussain, S. Rhee, S. Park, and N. Kim, "A low-profile high-gain filtering antenna for fifth generation systems based on nonuniform metasurface," Microw. Opt. Technol. Lett., Vol. 61, 2513, 2019.
doi:10.1002/mop.31931 Google Scholar
2. Salhi, R., M. Labidi, M. A. Boujemaa, and F. Choubani, "Dual-band microstrip patch antenna based on metamaterial refractive surface," Appl. Phys. A --- Mater., Vol. 123, 420, 2017.
doi:10.1007/s00339-017-1030-2 Google Scholar
3. Schaubert, D. H., D. M. Pozar, and A. Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories and experiment," IEEE T. Antenn. Propag., Vol. 37, 677, 1989.
doi:10.1109/8.29353 Google Scholar
4. Tian, C., Y. C. Jiao, G. Zhao, and H.Wang, "A wideband transmit array using triple-layer elements combined with cross slots and double square rings," IEEE Antenn. Wirel. Pr., Vol. 16, 1561, 2017.
doi:10.1109/LAWP.2017.2651027 Google Scholar
5. Carolina, M. S., A. P. Feresidis, and G. Goussetis, "Bandwidth enhancement of 2-D leaky-wave antennas with double-layer periodic surfaces," IEEE T. Antenn. Propag., Vol. 62, 586, 2014.
doi:10.1109/TAP.2013.2292076 Google Scholar
6. Xu, K. D., D. T. Li, Y. H. Liu, and Q. H. Liu, "Printed quasi-yagi antennas using double dipoles and stub-loaded technique for multi-band and broadband applications," IEEE Access, Vol. 6, 31695, 2018.
doi:10.1109/ACCESS.2018.2838328 Google Scholar
7. Rengasamy, R., D. Dhanasekaran, C. Chakraborty, and S. Ponnan, "Modified Minkowski fractal multiband antenna with circular-shaped split-ring resonator for wireless applications," Measurement, Vol. 182, 109766, 2021.
doi:10.1016/j.measurement.2021.109766 Google Scholar
8. Gupta, R. K. and J. Mukherjee, "Efficient high gain with low sidelobe level antenna structures using circular array of square parasitic patches on a superstrate layer," Microw. Opt. Technol. Lett., Vol. 52, 2812, 2010.
doi:10.1002/mop.25613 Google Scholar
9. Zhang, X. and L. Zhu, "Gain-enhanced patch antennas with loading of shorting pins," IEEE T. Antenn. Propag., Vol. 64, 3310, 2016.
doi:10.1109/TAP.2016.2573860 Google Scholar
10. Bai, H., G. M. Wang, and X. J. Zou, "A wideband and multi-mode metasurface antenna with gain enhancement," AEU --- Int. J. Electron. C., Vol. 126, 153402, 2020.
doi:10.1016/j.aeue.2020.153402 Google Scholar
11. Das, S. and S. Sahu, "Polarization reconfigurability enabled metamaterial inspired dielectric resonator based Fabry-Perot resonator cavity antenna with high gain and bandwidth," Int. J. RF Microw. C. E., Vol. 31, e22603, 2021. Google Scholar
12. Cao, Y. F., Y. Cai, W. Q. Cao, B. K. Xi, Z. P. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure," IEEE Antenn. Wirel. Pr., Vol. 18, 1405, 2019.
doi:10.1109/LAWP.2019.2917909 Google Scholar
13. Cheng, Y. Z., F. Chen, and H. Luo, "Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency," Nanoscale Res. Lett., Vol. 16, 12, 2021.
doi:10.1186/s11671-021-03474-6 Google Scholar
14. Gao, G. P., C. Yang, B. Hu, S. F. Wang, and R. F. Zhang, "Design of a high-gain and low-profile quasi-Cassegrain antenna based on metasurfaces," IEEE Antenn. Wirel. Pr., Vol. 17, 1435, 2018.
doi:10.1109/LAWP.2018.2848920 Google Scholar
15. Li, H. P., G. M. Wang, H. X. Xu, T. Cai, and J. G. Liang, "X-band phasegradient metasurface for high-gain lens antenna application," IEEE T. Antenn. Propag., Vol. 63, 5144, 2015.
doi:10.1109/TAP.2015.2475628 Google Scholar
16. Tong, X. Y., X. B. Zhao, F. Wei, L. Xu, and R. Li, "Broadband folded reflectarray based on single-layer subwavelength elements using discrete phase control," Int. J. Rf Microw. C. E., Vol. 31, e22710, 2021. Google Scholar
17. Yang, Z. Z., F. Liang, Y. Yi, D. S. Zhao, and B. Z.Wang, "Metasurface-based wideband, low-profile, and high-gain antenna," IET Microw. Antenna P., Vol. 13, 436, 2018.
doi:10.1049/iet-map.2018.5111 Google Scholar
18. Zhou, E. Y., Y. Z. Cheng, F. Chen, and H. Luo, "Wideband and high-gain patch antenna with re ective focusing metasurface," AEU --- Int. J. Electron. C., Vol. 134, 153709, 2021.
doi:10.1016/j.aeue.2021.153709 Google Scholar
19. Yue, T., Z. H. Jiang, and D. H. Werner, "Compact, wideband antennas enabled by interdigitated capacitor-loaded metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 1595, 2016.
doi:10.1109/TAP.2016.2535499 Google Scholar
20. Asadpor, L., G. Sharifi, and M. Rezvani, "Design of a high-gain wideband antenna using double-layer metasurface," Microw. Opt. Technol. Lett., Vol. 61, 1004, 2018.
doi:10.1002/mop.31697 Google Scholar
21. Majumder, L., K. Krishnamoorthy, J. Mukherjee, and K. P. Ray, "Compact broadband directive slot antenna loaded with cavities and single and double layers of metasurfaces," IEEE T. Antenn. Propag., Vol. 64, 4595, 2016.
doi:10.1109/TAP.2016.2601346 Google Scholar
22. Ma, S. B., H. Q. Zhai, Z. C. Wei, X. Y. Zhou, L. C. Zheng, and J. X. Li, "A high-selectivity dual-polarization filtering antenna with metamaterial for 5G application," Microw. Opt. Technol. Lett., Vol. 61, 63, 2018.
doi:10.1002/mop.31525 Google Scholar
23. Pan, Y. M., P. F. Hu, X. Y. Zhang, and S. Y. Zheng, "A low-profile high-gain and wideband filtering antenna with metasurface," IEEE T. Antenn. Propag., Vol. 64, 2010, 2016.
doi:10.1109/TAP.2016.2535498 Google Scholar
24. Wu, T., J. Chen, and M. J. Wang, "Multi-state circularly polarized antenna based on the polarization conversion metasurface with gain enhancement," IEEE Access, Vol. 8, 84660, 2020.
doi:10.1109/ACCESS.2020.2992313 Google Scholar
25. Rajanna, P. K. T., K. Rudramuni, and K. Kandasamy, "A high gain circularly polarized antenna using zero-index metamaterial," IEEE Antenn. Wirel. Pr., Vol. 18, 1129, 2019.
doi:10.1109/LAWP.2019.2910805 Google Scholar
26. Hong, T., S. Wang, Z. Y. Liu, and S. X. Gong, "RCS reduction and gain enhancement for the circularly polarized array by polarization conversion metasurface coating," IEEE Antenn. Wirel. Pr., Vol. 18, 167, 2019.
doi:10.1109/LAWP.2018.2884944 Google Scholar
27. Fan, J. P., Y. Z. Cheng, and B. He, "High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies," J. Phys. D: Appl. Phys., Vol. 54, 115101, 2021.
doi:10.1088/1361-6463/abcdd0 Google Scholar
28. Cheng, Y. Z., J. P. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615, 2019.
doi:10.1109/ACCESS.2019.2962299 Google Scholar
29. Dwivedi, A. K., A. Sharma, A. K. Singh, and V. Singh, "Metamaterial inspired dielectric resonator MIMO antenna for isolation enhancement and linear to circular polarization of waves," Measurement, Vol. 182, 109681, 2021.
doi:10.1016/j.measurement.2021.109681 Google Scholar
30. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE T. Antenn. Propag., Vol. 62, 1165, 2013.
doi:10.1109/TAP.2013.2293788 Google Scholar
31. Liu, W., Z. N. Chen, and X. M. Qing, "Metamaterial-based low-profile broadband aperture-coupled grid-slotted patch antenna," IEEE T. Antenn. Propag., Vol. 63, 3325, 2015.
doi:10.1109/TAP.2015.2429741 Google Scholar
32. Majumder, B., K. Kandasamy, J. Mukherjee, and K. P. Ray, "Wideband compact directive metasurface enabled pair of slot antennas," Electron. Lett., Vol. 51, 1310, 2015.
doi:10.1049/el.2015.1998 Google Scholar
33. Bai, H. and G. M. Wang, "A multistate high gain antenna based on metasurface," Int. J. RF Microw. C. E., Vol. 30, e22330, 2020. Google Scholar
34. Sievenpiper, D., L. J. Zhang, and R. F. J. Broas, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE T. Microw. Theory, Vol. 47, 2059, 1999.
doi:10.1109/22.798001 Google Scholar
35. Chen, D. X., W. C. Yang, Q. Xue, and W. Q. Che, "Wideband high-gain multiresonance antenna based on polarization-dependent metasurface," Microw. Opt. Technol. Lett., Vol. 63, 638, 2021.
doi:10.1002/mop.32649 Google Scholar
36. Wang, J., Y. Cheng, H. Luo, F. Chen, and L. Wu, "High-gain bidirectional radiative circularly polarized antenna based on focusing metasurface," Int. J. Electron. Commun. (AEÜ), Vol. 151, 154222, 2022.
doi:10.1016/j.aeue.2022.154222 Google Scholar
37. Cheng, Y. Z., J. Yu, and X. Li, "Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures," Appl. Phys. B --- Lasers O., Vol. 128, 1, 2022.
doi:10.1007/s00340-021-07724-4 Google Scholar