Vol. 176
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2023-01-11
Intelligent Microwave Staring Correlated Imaging
By
Progress In Electromagnetics Research, Vol. 176, 109-128, 2023
Abstract
Microwave staring correlated imaging (MSCI) is a super-resolution imaging technique based on temporal-spatial stochastic radiation fields (TSSRFs), which requires an accurate calculation of the electromagnetic field at the imaging plane. However, systematic errors always exist in practice, such as the time synchronization and frequency synchronization errors of radar systems, which make it difficult to calculate the required TSSRFs accurately, and this deteriorates the imaging results. Meanwhile, some imaging algorithms have problems such as high computational complexity. In this paper, an intelligent MSCI method based on the deep neural network (DNN) is proposed, which can accomplish imaging directly from the echoes, avoiding the computation of TSSRFs. A multi-level residual convolutional neural network (MRCNN) is developed for the DNN, and simulations and experiments are carried out to obtain the dataset for training and testing the MRCNN. Compared with the conventional MSCI methods, the imaging results verify the effectiveness of intelligent MSCI in terms of imaging quality and computational efficiency.
Citation
Kui Ying Xinyu Yu Jiana Shen Shilu Zhang Yuanyue Guo , "Intelligent Microwave Staring Correlated Imaging," Progress In Electromagnetics Research, Vol. 176, 109-128, 2023.
doi:10.2528/PIER22091907
http://www.jpier.org/PIER/pier.php?paper=22091907
References

1. Dunkel, R., R. Saddler, and A. Doerry, "Synthetic aperture radar for disaster monitoring," Radar Sensor Technology XV, 125-134, 2011.

2. Madsen, S., W. Edelstein, L. D. DiDomenico, and J. LaBrecque, "A geosynchronous synthetic aperture radar; for tectonic mapping, disaster management and measurements of vegetation and soil moisture," IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 1, 447-449, 2001.

3. Deng, B., Y. Qin, Y. Li, H. Wang, and X. Li, "A novel approach to range doppler SAR processing based on legendre orthogonal polynomials," IEEE Geoscience and Remote Sensing Letters, Vol. 6, No. 1, 13-17, 2008.
doi:10.1109/LGRS.2008.2006572

4. Zhu, Y., Y. Su, and W. Yu, "An ISAR imaging method based on MIMO technique," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 8, 3290-3299, 2010.
doi:10.1109/TGRS.2010.2045230

5. Guo, Y., D. Wang, X. He, and B. Liu, "Super-resolution staring imaging radar based on stochastic radiation fields," 2012 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications, 1-4, 2012.

6. Li, D., X. Li, Y. Qin, Y. Cheng, and H. Wang, "Radar coincidence imaging: An instantaneous imaging technique with stochastic signals," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 4, 2261-2277, 2013.

7. Xu, X., X. Zhou, Y. Cheng, and Y. Qin, "Radar coincidence imaging with array position error," 2015 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1-4, 2015.

8. Zhou, X., H. Wang, Y. Cheng, and Y. Qin, "Sparse auto-calibration for radar coincidence imaging with gain-phase errors," Multidisciplinary Digital Publishing Institute, Vol. 15, No. 11, 27611-27624, 2015.

9. Zhou, X., H. Wang, and Y. Cheng, "Expansion-compression variance-component-based autofocusing method for joint radar coincidence imaging and gain-phase error calibration," SPIE, Vol. 11, No. 2, 025002, 2017.

10. Cao, K., X. Zhou, Y. Cheng, and Y. Qin, "Improved focal underdetermined system solver method for radar coincidence imaging with model mismatch," Journal of Electronic Imaging, Vol. 26, No. 3, 033001, 2017.
doi:10.1117/1.JEI.26.3.033001

11. Cao, K., X. Zhou, Y. Cheng, B. Fan, and Y. Qin, "Total variation-based method for radar coincidence imaging with model mismatch for extended target," Journal of Electronic Imaging, Vol. 26, No. 6, 063007, 2017.
doi:10.1117/1.JEI.26.6.063007

12. He, X., B. Liu, S. Chai, and D. Wang, "A novel approach of high spatial-resolution microwave staring imaging," Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 75-78, 2013.

13. Meng, Q., B. Liu, C. Tian, Y. Guo, and D. Wang, "Correlation algorithm of microwave staring correlated imaging based on multigrid and CGLS," 2015 IEEE International Conference on Communication Problem-Solving (ICCP), 359-362, 2015.

14. Yu, H., G. H. Lu, and H. L. Zhang, "Adaptive sparse recovery of moving targets for distributed MIMO radar," Advanced Materials Research, Vol. 933, 450-455, Trans. Tech. Publ., 2014.

15. Lou, G. and H. Shi, "Face image recognition based on convolutional neural network," China Communications, Vol. 17, No. 2, 117-124, 2020.
doi:10.23919/JCC.2020.02.010

16. Shen, W. and W. Wang, "Node identification in wireless network based on convolutional neural network," 2018 14th International Conference on Computational Intelligence and Security (CIS), 238-241, 2018.

17. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets," Advances in Neural Information Processing Systems, Vol. 27, 2014.

18. Ledig, C., et al., "Photo-realistic single image super-resolution using a generative adversarial network," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4681-4690, 2017.

19. Long, J., E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431-3440, 2015.

20. Girshick, R., J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587, 2014.

21. Milletari, F., N. Navab, and S.-A. Ahmadi, "V-net: Fully convolutional neural networks for volumetric medical image segmentation," 2016 Fourth International Conference on 3D Vision (3DV), 565-571, 2016.
doi:10.1109/3DV.2016.79

22. Niu, S., X. Qiu, L. Peng, and B. Lei, "Parameter prediction method of SAR target simulation based on convolutional neural networks," EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, 1-5, 2018.

23. Shao, W. and Y. Du, "Microwave imaging by deep learning network: Feasibility and training method," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5626-5635, 2020.
doi:10.1109/TAP.2020.2978952

24. Li, L., Y. Shuang, Q. Ma, H. Li, H. Zhao, M. Wei, C. Liu, C. Hao, C.-W. Qiu, and T. J. Cui, "Intelligent metasurface imager and recognizer," Light: Science & Applications, Vol. 8, No. 1, 1-9, 2019.
doi:10.1038/s41377-018-0109-7

25. Li, H.-Y., H.-T. Zhao, M.-L. Wei, H.-X. Ruan, Y. Shuang, T. J. Cui, P. Del Hougne, and L. Li, "Intelligent electromagnetic sensing with learnable data acquisition and processing," Patterns, Vol. 1, No. 1, 100006, 2020.
doi:10.1016/j.patter.2020.100006

26. Xing, Y., L. Zhong, and X. Zhong, "An encoder-decoder network based FCN architecture for semantic segmentation," Wireless Communications and Mobile Computing, Vol. 2020, 2020.

27. Deng, L., "The mnist database of handwritten digit images for machine learning research [best of the web]," IEEE Signal Processing Magazine, Vol. 29, No. 6, 141-142, 2012.
doi:10.1109/MSP.2012.2211477

28. He, K., X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770-778, 2016.

29. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 6117, 310-313, 2013.
doi:10.1126/science.1230054

30. Sleasman, T., M. Boyarsky, M. F. Imani, J. N. Gollub, and D. R. Smith, "Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies," JOSA B, Vol. 33, No. 6, 1098-1111, 2016.
doi:10.1364/JOSAB.33.001098

31. Imani, M. F., T. Sleasman, and D. R. Smith, "Two-dimensional dynamic metasurface apertures for computational microwave imaging," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2299-2303, 2018.
doi:10.1109/LAWP.2018.2873131

32. Hoang, T. V., V. Fusco, T. Fromenteze, and O. Yurduseven, "Computational polarimetric imaging using two-dimensional dynamic metasurface apertures," IEEE Open Journal of Antennas and Propagation, Vol. 2, 488-497, 2021.
doi:10.1109/OJAP.2021.3069320

33. Sleasman, T. A., M. F. Imani, A. V. Diebold, M. Boyarsky, K. P. Trofatter, and D. R. Smith, "Implementation and characterization of a two-dimensional printed circuit dynamic metasurface aperture for computational microwave imaging," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 4, 2151-2164, 2020.
doi:10.1109/TAP.2020.3027188