Vol. 176
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-11-26
Optical Neural Networks for Holographic Image Recognition (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 176, 25-33, 2023
Abstract
Inspired by neural networks based on traditional electronic circuits, optical neural networks (ONNs) show great potential in terms of computing speed and power consumption. Though some progress has been made in devices and schemes, ONNs are still a long way from replacing electronic neural networks in terms of generalizability. Here, we present a complex optical neural network (cONN) for holographic image recognition, within which a high-speed parallel operating unit for complex matrices is proposed, targeting the real-imaginary-splitting and column splitting. Based on the proposed cONN, we have numerically demonstrated the training-recognition process on our cONN for holographic images converted from handwritten digit datasets, achieving an accuracy of 90% based on the back-propagation algorithm. Our training verification integrated architecture will enrich the further development and applications of on-chip photonic matrix computing.
Citation
Yiming Feng, Junru Niu, Yiyun Zhang, Yixuan Li, Hongsheng Chen, and Haoliang Qian, "Optical Neural Networks for Holographic Image Recognition (Invited Paper)," Progress In Electromagnetics Research, Vol. 176, 25-33, 2023.
doi:10.2528/PIER22092907
References

1. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the Acm, Vol. 60, 84-90, 2017.
doi:10.1145/3065386

2. Suzuki, K., H. Abe, H. MacMahon, and K. Doi, "Image-processing technique for suppressing ribs in chest radiographs by means of Massive Training Artificial Neural Network (MTANN)," IEEE Trans. Med. Imaging, Vol. 25, 406-416, 2006.
doi:10.1109/TMI.2006.871549

3. Chan, W., N. Jaitly, Q. Le, and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4960-4964, Mar. 20-25, 2016.

4. Abdel-Hamid, O., A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, "Convolutional neural networks for speech recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 22, 1533-1545, 2014.
doi:10.1109/TASLP.2014.2339736

5. Guo, S., Y. Lin, S. Li, Z. Chen, and H. Wan, "Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting," IEEE Transactions on Intelligent Transportation Systems, Vol. 20, 3913-3926, 2019.
doi:10.1109/TITS.2019.2906365

6. Meng, J., M. Miscuglio, J. K. George, A. Babakhani, and V. J. Sorger, "Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters," Advanced Photonics Research, Vol. 2, 2000033, 2021.
doi:10.1002/adpr.202000033

7. Wei, J., Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, "400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation," IEEE Communications Magazine, Vol. 53, 182-189, 2015.
doi:10.1109/MCOM.2015.7045407

8. Shen, Y., N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljacic, "Deep learning with coherent nanophotonic circuits," Nat. Photonics, Vol. 11, 441-446, 2017.
doi:10.1038/nphoton.2017.93

9. Cheng, J., H. Zhou, and J. Dong, "Photonic matrix computing: From fundamentals to applications," Nanomaterials, Vol. 11, 1683, 2021.
doi:10.3390/nano11071683

10. Li, C., X. Zhang, J. Li, T. Fang, and X. Dong, "The challenges of modern computing and new opportunities for optics," PhotoniX, Vol. 2, 20, 2021.
doi:10.1186/s43074-021-00042-0

11. Wang, P., F. Xu, B. Wang, B. Gao, H. Wu, H. Qian, and S. Yu, "Three-dimensional nand flash for vector-matrix multiplication," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, 988-991, 2019.
doi:10.1109/TVLSI.2018.2882194

12. Lehmann, T., E. Bruun, and C. Dietrich, "Mixed analog/digital matrix-vector multiplier for neural network synapses," Analog Integrated Circuits and Signal Processing, Vol. 9, 55-63, 1996.
doi:10.1007/BF00158852

13. Sze, V., Y. H. Chen, T. J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," Proceedings of the IEEE, Vol. 105, 2295-2329, 2017.
doi:10.1109/JPROC.2017.2761740

14. Reck, M., A. Zeilinger, H. J. Bernstein, and P. Bertani, "Experimental realization of any discrete unitary operator," Phys. Rev. Lett., Vol. 73, 58-61, 1994.
doi:10.1103/PhysRevLett.73.58

15. Clements, W. R., P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A.Walmsley, "Optimal design for universal multiport interferometers," Optica, Vol. 3, 1460-1465, 2016.
doi:10.1364/OPTICA.3.001460

16. Ahn, J., M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, "Devices and architectures for photonic chip-scale integration," Applied Physics A, Vol. 95, 989-997, 2009.
doi:10.1007/s00339-009-5109-2

17. Lin, X., Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, "All-optical machine learning using diffractive deep neural networks," Science, Vol. 361, 1004-1008, 2018.
doi:10.1126/science.aat8084

18. Zhou, J., H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo, S. Wen, S. Chen, and Z. Liu, "Two-dimensional optical spatial differentiation and high-contrast imaging," National Science Review, Vol. 8, 2020.

19. Qian, C., Z. Wang, H. Qian, T. Cai, B. Zheng, X. Lin, Y. Shen, I. Kaminer, E. Li, and H. Chen, "Dynamic recognition and mirage using neuro-metamaterials," Nat. Commun., Vol. 13, 2694, 2022.
doi:10.1038/s41467-022-30377-6

20. Tian, Y., Y. Zhao, S. Liu, Q. Li, W. Wang, J. Feng, and J. Guo, "Scalable and compact photonic neural chip with low learning-capability-loss," Nanophotonics, Vol. 11, 329-344, 2022.
doi:10.1515/nanoph-2021-0521

21. Feldmann, J., N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, "Parallel convolutional processing using an integrated photonic tensor core," Nature, Vol. 589, 52-58, 2021.
doi:10.1038/s41586-020-03070-1

22. Xu, X., M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, and D. J. Moss, "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Vol. 589, 44-51, 2021.
doi:10.1038/s41586-020-03063-0

23. Oliveira, N., G. E. Khoury, J. M. Versnel, G. K. Moghaddam, L. S. Leite, J. L. Lima-Filho, and C. R. Lowe, "A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine," Sensors and Actuators, Vol. B270, 216-222, 2018.
doi:10.1016/j.snb.2018.05.009

24. Spetzler, R. F. and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg., Vol. 52, 825-828, 1980.
doi:10.3171/jns.1980.52.6.0825

25. Fuhrmann, S., O. Komogortsev, and D. Tamir, "Investigating hologram-based route planning," Transactions in GIS, Vol. 13, 177-196, 2009.
doi:10.1111/j.1467-9671.2009.01158.x

26. Khatun, R., K. T. Ahmmed, A. Z. Chowdhury, and R. Hossen, "Optimization of 2 x 2 MZI electro-optic switch and its application as logic gate," 2015 18th International Conference on Computer and Information Technology (ICCIT), 294-299, Dec. 21-23, 2015.

27. Kumar Raghuwanshi, S., A. Kumar, and N.-K. Chen, "Implementation of sequential logic circuits using the Mach-Zehnder interferometer structure based on electro-optic effect," Opt. Commun., Vol. 333, 193-208, 2014.
doi:10.1016/j.optcom.2014.07.066

28. Stegmaier, M., C. Rios, H. Bhaskaran, and W. H. P. Pernice, "Thermo-optical effect in phase-change nanophotonics," ACS Photonics, Vol. 3, 828-835, 2016.
doi:10.1021/acsphotonics.6b00032

29. Chen, S., Y. Shi, S. He, and D. Dai, "Variable optical attenuator based on a reflective Mach-Zehnder interferometer," Opt. Commun., Vol. 361, 55-58, 2016.
doi:10.1016/j.optcom.2015.10.041

30. David, E. R. and L. M. James, "Learning internal representations by error propagation," Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, 318-362, MIT Press, 1987.

31. Zhu, H. H., J. Zou, H. Zhang, Y. Z. Shi, S. B. Luo, N. Wang, H. Cai, L. X. Wan, B. Wang, X. D. Jiang, J. Thompson, X. S. Luo, X. H. Zhou, L. M. Xiao, W. Huang, L. Patrick, M. Gu, L. C. Kwek, and A. Q. Liu, "Space-efficient optical computing with an integrated chip diffractive neural network," Nat. Commun., Vol. 13, 1044, 2022.
doi:10.1038/s41467-022-28702-0

32. Sludds, A., S. Bandyopadhyay, Z. Chen, Z. Zhong, J. Cochrane, L. Bernstein, D. Bunandar, P. B. Dixon, S. A. Hamilton, M. Streshinsky, A. Novack, T. Baehr-Jones, M. Hochberg, M. Ghobadi, R. Hamerly, and D. Englund, "Delocalized photonic deep learning on the internet's edge," Science, Vol. 378, 270-276, 2022.
doi:10.1126/science.abq8271

33. Qian, H., S. Li, Y. Li, C.-F. Chen, W. Chen, S. E. Bopp, Y.-U. Lee, W. Xiong, and Z. Liu, "Nanoscale optical pulse limiter enabled by refractory metallic quantum wells," Science Advances, Vol. 6, eaay3456, 2020.
doi:10.1126/sciadv.aay3456

34. Qian, H., S. Li, C.-F. Chen, S.-W. Hsu, S. E. Bopp, Q. Ma, A. R. Tao, and Z. Liu, "Large optical nonlinearity enabled by coupled metallic quantum wells," Light: Science & Applications, Vol. 8, 13, 2019.
doi:10.1038/s41377-019-0123-4

35. Qian, H., Y. Xiao, and Z. Liu, "Giant Kerr response of ultrathin gold films from quantum size effect," Nat. Commun., Vol. 7, 13153, 2016.
doi:10.1038/ncomms13153

36. Ma, H., D. Li, N. Wu, Y. Zhang, H. Chen, and H. Qian, "Nonlinear all-optical modulator based on non-Hermitian PT symmetry," Photonics Research, Vol. 10, 980-988, 2022.
doi:10.1364/PRJ.450747

37. El-Ganainy, R., K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys., Vol. 14, 11-19, 2018.
doi:10.1038/nphys4323

38. Miri, M.-A. and A. Alu, "Exceptional points in optics and photonics," Science, Vol. 363, eaar7709, 2019.
doi:10.1126/science.aar7709