1. Krizhevsky, A., I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communications of the Acm, Vol. 60, 84-90, 2017.
doi:10.1145/3065386 Google Scholar
2. Suzuki, K., H. Abe, H. MacMahon, and K. Doi, "Image-processing technique for suppressing ribs in chest radiographs by means of Massive Training Artificial Neural Network (MTANN)," IEEE Trans. Med. Imaging, Vol. 25, 406-416, 2006.
doi:10.1109/TMI.2006.871549 Google Scholar
3. Chan, W., N. Jaitly, Q. Le, and O. Vinyals, "Listen, attend and spell: A neural network for large vocabulary conversational speech recognition," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4960-4964, Mar. 20-25, 2016. Google Scholar
4. Abdel-Hamid, O., A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, "Convolutional neural networks for speech recognition," IEEE/ACM Transactions on Audio, Speech, and Language Processing, Vol. 22, 1533-1545, 2014.
doi:10.1109/TASLP.2014.2339736 Google Scholar
5. Guo, S., Y. Lin, S. Li, Z. Chen, and H. Wan, "Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting," IEEE Transactions on Intelligent Transportation Systems, Vol. 20, 3913-3926, 2019.
doi:10.1109/TITS.2019.2906365 Google Scholar
6. Meng, J., M. Miscuglio, J. K. George, A. Babakhani, and V. J. Sorger, "Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters," Advanced Photonics Research, Vol. 2, 2000033, 2021.
doi:10.1002/adpr.202000033 Google Scholar
7. Wei, J., Q. Cheng, R. V. Penty, I. H. White, and D. G. Cunningham, "400 Gigabit Ethernet using advanced modulation formats: Performance, complexity, and power dissipation," IEEE Communications Magazine, Vol. 53, 182-189, 2015.
doi:10.1109/MCOM.2015.7045407 Google Scholar
8. Shen, Y., N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljacic, "Deep learning with coherent nanophotonic circuits," Nat. Photonics, Vol. 11, 441-446, 2017.
doi:10.1038/nphoton.2017.93 Google Scholar
9. Cheng, J., H. Zhou, and J. Dong, "Photonic matrix computing: From fundamentals to applications," Nanomaterials, Vol. 11, 1683, 2021.
doi:10.3390/nano11071683 Google Scholar
10. Li, C., X. Zhang, J. Li, T. Fang, and X. Dong, "The challenges of modern computing and new opportunities for optics," PhotoniX, Vol. 2, 20, 2021.
doi:10.1186/s43074-021-00042-0 Google Scholar
11. Wang, P., F. Xu, B. Wang, B. Gao, H. Wu, H. Qian, and S. Yu, "Three-dimensional nand flash for vector-matrix multiplication," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, 988-991, 2019.
doi:10.1109/TVLSI.2018.2882194 Google Scholar
12. Lehmann, T., E. Bruun, and C. Dietrich, "Mixed analog/digital matrix-vector multiplier for neural network synapses," Analog Integrated Circuits and Signal Processing, Vol. 9, 55-63, 1996.
doi:10.1007/BF00158852 Google Scholar
13. Sze, V., Y. H. Chen, T. J. Yang, and J. S. Emer, "Efficient processing of deep neural networks: A tutorial and survey," Proceedings of the IEEE, Vol. 105, 2295-2329, 2017.
doi:10.1109/JPROC.2017.2761740 Google Scholar
14. Reck, M., A. Zeilinger, H. J. Bernstein, and P. Bertani, "Experimental realization of any discrete unitary operator," Phys. Rev. Lett., Vol. 73, 58-61, 1994.
doi:10.1103/PhysRevLett.73.58 Google Scholar
15. Clements, W. R., P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A.Walmsley, "Optimal design for universal multiport interferometers," Optica, Vol. 3, 1460-1465, 2016.
doi:10.1364/OPTICA.3.001460 Google Scholar
16. Ahn, J., M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S. Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, "Devices and architectures for photonic chip-scale integration," Applied Physics A, Vol. 95, 989-997, 2009.
doi:10.1007/s00339-009-5109-2 Google Scholar
17. Lin, X., Y. Rivenson, N. T. Yardimci, M. Veli, Y. Luo, M. Jarrahi, and A. Ozcan, "All-optical machine learning using diffractive deep neural networks," Science, Vol. 361, 1004-1008, 2018.
doi:10.1126/science.aat8084 Google Scholar
18. Zhou, J., H. Qian, J. Zhao, M. Tang, Q. Wu, M. Lei, H. Luo, S. Wen, S. Chen, and Z. Liu, "Two-dimensional optical spatial differentiation and high-contrast imaging," National Science Review, Vol. 8, 2020. Google Scholar
19. Qian, C., Z. Wang, H. Qian, T. Cai, B. Zheng, X. Lin, Y. Shen, I. Kaminer, E. Li, and H. Chen, "Dynamic recognition and mirage using neuro-metamaterials," Nat. Commun., Vol. 13, 2694, 2022.
doi:10.1038/s41467-022-30377-6 Google Scholar
20. Tian, Y., Y. Zhao, S. Liu, Q. Li, W. Wang, J. Feng, and J. Guo, "Scalable and compact photonic neural chip with low learning-capability-loss," Nanophotonics, Vol. 11, 329-344, 2022.
doi:10.1515/nanoph-2021-0521 Google Scholar
21. Feldmann, J., N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, and H. Bhaskaran, "Parallel convolutional processing using an integrated photonic tensor core," Nature, Vol. 589, 52-58, 2021.
doi:10.1038/s41586-020-03070-1 Google Scholar
22. Xu, X., M. Tan, B. Corcoran, J. Wu, A. Boes, T. G. Nguyen, S. T. Chu, B. E. Little, D. G. Hicks, R. Morandotti, A. Mitchell, and D. J. Moss, "11 TOPS photonic convolutional accelerator for optical neural networks," Nature, Vol. 589, 44-51, 2021.
doi:10.1038/s41586-020-03063-0 Google Scholar
23. Oliveira, N., G. E. Khoury, J. M. Versnel, G. K. Moghaddam, L. S. Leite, J. L. Lima-Filho, and C. R. Lowe, "A holographic sensor based on a biomimetic affinity ligand for the detection of cocaine," Sensors and Actuators, Vol. B270, 216-222, 2018.
doi:10.1016/j.snb.2018.05.009 Google Scholar
24. Spetzler, R. F. and H. Spetzler, "Holographic interferometry applied to the study of the human skull," J. Neurosurg., Vol. 52, 825-828, 1980.
doi:10.3171/jns.1980.52.6.0825 Google Scholar
25. Fuhrmann, S., O. Komogortsev, and D. Tamir, "Investigating hologram-based route planning," Transactions in GIS, Vol. 13, 177-196, 2009.
doi:10.1111/j.1467-9671.2009.01158.x Google Scholar
26. Khatun, R., K. T. Ahmmed, A. Z. Chowdhury, and R. Hossen, "Optimization of 2 x 2 MZI electro-optic switch and its application as logic gate," 2015 18th International Conference on Computer and Information Technology (ICCIT), 294-299, Dec. 21-23, 2015. Google Scholar
27. Kumar Raghuwanshi, S., A. Kumar, and N.-K. Chen, "Implementation of sequential logic circuits using the Mach-Zehnder interferometer structure based on electro-optic effect," Opt. Commun., Vol. 333, 193-208, 2014.
doi:10.1016/j.optcom.2014.07.066 Google Scholar
28. Stegmaier, M., C. Rios, H. Bhaskaran, and W. H. P. Pernice, "Thermo-optical effect in phase-change nanophotonics," ACS Photonics, Vol. 3, 828-835, 2016.
doi:10.1021/acsphotonics.6b00032 Google Scholar
29. Chen, S., Y. Shi, S. He, and D. Dai, "Variable optical attenuator based on a reflective Mach-Zehnder interferometer," Opt. Commun., Vol. 361, 55-58, 2016.
doi:10.1016/j.optcom.2015.10.041 Google Scholar
30. David, E. R. and L. M. James, "Learning internal representations by error propagation," Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations, 318-362, MIT Press, 1987. Google Scholar
31. Zhu, H. H., J. Zou, H. Zhang, Y. Z. Shi, S. B. Luo, N. Wang, H. Cai, L. X. Wan, B. Wang, X. D. Jiang, J. Thompson, X. S. Luo, X. H. Zhou, L. M. Xiao, W. Huang, L. Patrick, M. Gu, L. C. Kwek, and A. Q. Liu, "Space-efficient optical computing with an integrated chip diffractive neural network," Nat. Commun., Vol. 13, 1044, 2022.
doi:10.1038/s41467-022-28702-0 Google Scholar
32. Sludds, A., S. Bandyopadhyay, Z. Chen, Z. Zhong, J. Cochrane, L. Bernstein, D. Bunandar, P. B. Dixon, S. A. Hamilton, M. Streshinsky, A. Novack, T. Baehr-Jones, M. Hochberg, M. Ghobadi, R. Hamerly, and D. Englund, "Delocalized photonic deep learning on the internet's edge," Science, Vol. 378, 270-276, 2022.
doi:10.1126/science.abq8271 Google Scholar
33. Qian, H., S. Li, Y. Li, C.-F. Chen, W. Chen, S. E. Bopp, Y.-U. Lee, W. Xiong, and Z. Liu, "Nanoscale optical pulse limiter enabled by refractory metallic quantum wells," Science Advances, Vol. 6, eaay3456, 2020.
doi:10.1126/sciadv.aay3456 Google Scholar
34. Qian, H., S. Li, C.-F. Chen, S.-W. Hsu, S. E. Bopp, Q. Ma, A. R. Tao, and Z. Liu, "Large optical nonlinearity enabled by coupled metallic quantum wells," Light: Science & Applications, Vol. 8, 13, 2019.
doi:10.1038/s41377-019-0123-4 Google Scholar
35. Qian, H., Y. Xiao, and Z. Liu, "Giant Kerr response of ultrathin gold films from quantum size effect," Nat. Commun., Vol. 7, 13153, 2016.
doi:10.1038/ncomms13153 Google Scholar
36. Ma, H., D. Li, N. Wu, Y. Zhang, H. Chen, and H. Qian, "Nonlinear all-optical modulator based on non-Hermitian PT symmetry," Photonics Research, Vol. 10, 980-988, 2022.
doi:10.1364/PRJ.450747 Google Scholar
37. El-Ganainy, R., K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys., Vol. 14, 11-19, 2018.
doi:10.1038/nphys4323 Google Scholar
38. Miri, M.-A. and A. Alu, "Exceptional points in optics and photonics," Science, Vol. 363, eaar7709, 2019.
doi:10.1126/science.aar7709 Google Scholar