1. Vukicevic, A., F. Rachidi, M. Rubinstein, and S. V. Tkachenko, "On the evaluation of antenna-mode currents along transmission lines," IEEE T. Electromagn. C., Vol. 48, 693, 2006.
doi:10.1109/TEMC.2006.884511 Google Scholar
2. Qin, Y. F. and D. H. Werner, "Dual-band omnidirectional/unidirectional patch antenna based on multiconductor transmission line theory," IEEE International Symposium on Antennas and Propagation, 17280945, 2017. Google Scholar
3. Morozov, V. M. and V. I. Magro, "Method of analysis of antennas and transmission lines," 6th International Conference on Antenna Theory and Techniques, 9704288, 2007. Google Scholar
4. Frank, G., "An insightful derivation of transmission line equations including electromagnetic field- coupling," 2018 International Symposium on Electromagnetic Compatibility, 18149739, 2018. Google Scholar
5. Gronwald, F., J. Nitsch, and S. Tkachenko, "Generalized transmission line theory as an antenna theory for EMC analysis," Electr. Eng., Vol. 93, 147, 2011.
doi:10.1007/s00202-011-0200-z Google Scholar
6. Lau, B. K., J. B. Andersen, G. Kristensson, and A. F. Molisch, "Impact of matching network on bandwidth of compact antenna arrays," IEEE T. Antenn. Propag., Vol. 54, 3225, 2006.
doi:10.1109/TAP.2006.883984 Google Scholar
7. Fei, Y., Y. Fan, B. K. Lau, and J. S. Thompson, "Optimal singleport matching impedance for capacity maximization in compact MIMO arrays," IEEE T. Antenn. Propag., Vol. 56, 3566, 2008.
doi:10.1109/TAP.2008.2005463 Google Scholar
8. Tsen, W. F. and H. J. Li, "Uncoupled impedance matching for capacity maximization of compact MIMO arrays," IEEE Antenn. Wirel. Pr., Vol. 8, 1295, 2009.
doi:10.1109/LAWP.2009.2037445 Google Scholar
9. Allen, J. C., J. Rockaway, and D. Arceo, Wideband multiport matching phase I: Single-feed multiport antennas, Tech. Rep. SSC/SD-TR-1972, Space and Naval Warfare Systems Center, 2008.
10. Skirelis, J., A. Patlins, N. Kunicina, A. Romanovs, and A. Zabasta, "Wireless sensor networks: Towards resilience against weather-based disruptions," Electr. Control. Commu., Vol. 15, 79, 2019.
doi:10.2478/ecce-2019-0011 Google Scholar
11. Li, M., W. J. Lou, and K. Ren, "Data security and privacy in wireless body area networks," IEEE Wirel. Commun., Vol. 17, 51, 2010.
doi:10.1109/MWC.2010.5416350 Google Scholar
12. John, F. F., J. J. Ma, and L. Moeller, "Review of weather impact on outdoor terahertz wireless communication links," Nano Commun. Netw., Vol. 10, 13, 2016.
doi:10.1016/j.nancom.2016.07.006 Google Scholar
13. Wing, S., "Mobile and wireless communication: Space weather threats, forecasts, and risk management," IT Prof., Vol. 14, 40, 2012.
doi:10.1109/MITP.2012.69 Google Scholar
14. Rashed, A. N. Z. and M. M. E. El-Halawany, "Transmission characteristics evaluation under bad weather conditions in optical wireless links with different optical transmission window," Wireless Pers. Commun., Vol. 71, 1577, 2013.
doi:10.1007/s11277-012-0893-y Google Scholar
15. Orta, R., R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE T. Antenn. Propag., Vol. 36, 1707, 1988.
doi:10.1109/8.14392 Google Scholar
16. Du, Y. W., Telecommunications Design Method of the Radome, National Defense Industry Press, 1993.
17. Li, P., W. Y. Xu, and L. W. Song, "A novel compensation strategy for the radiation characteristics of large dielectric radomes based on phase modification," IEEE Antenn. Wirel. Pr., Vol. 15, 1044, 2016.
doi:10.1109/LAWP.2015.2491298 Google Scholar
18. Li, Y. R., X. Jin, W. Li, J. R. Niu, X. Han, X. F. Yang, W. Y. Wang, T. Lin, and Z. T. Zhu, "Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation," Sci. China Mater., Vol. 65, 1057, 2021.
doi:10.1007/s40843-021-1840-3 Google Scholar
19. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE T. Antenn. Propag., Vol. 60, 2740, 2012.
doi:10.1109/TAP.2012.2194640 Google Scholar
20. Chen, H. Y., X. Y. Hou, and L. J. Den, "Design of frequency-selective surfaces radome for a planar slotted waveguide antenna," IEEE Antenn. Wirel. Pr., Vol. 8, 1231, 2009.
doi:10.1109/LAWP.2009.2035646 Google Scholar
21. Zhou, H., S. B. Qu, B. Q. Lin, and P. Bai, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE T. Antenn. Propag., Vol. 60, 3040, 2012.
doi:10.1109/TAP.2012.2194648 Google Scholar
22. Ye, D. X., Z. Wang, Z. Y. Wang, K. W. Xu, B. Zhang, J. T. Huangfu, C. Z. Li, and L. X. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces," IEEE T. Antenn. Propag., Vol. 60, 5164, 2012.
doi:10.1109/TAP.2012.2207686 Google Scholar
23. Fang, Y., G. Sun, Y. H. Bi, and H. Zhi, "Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism," Sci. Bull., Vol. 60, 256, 2015.
doi:10.1007/s11434-014-0653-3 Google Scholar
24. Wang, D. H., Q. Q. Sun, R. H. A. Ras, and X. Deng, "Design of robust superhydrophobic surfaces," Nature, Vol. 582, 55, 2020.
doi:10.1038/s41586-020-2331-8 Google Scholar
25. Zhang, W., Y. L. Wu, J. C. Li, M. M. Zou, and H. Y. Zheng, "UV laser-produced copper micro-mesh with superhydrophobic-oleophilic surface for oil-water separation," J. Mater. Res. Technol., Vol. 15, 5733, 2021.
doi:10.1016/j.jmrt.2021.11.016 Google Scholar
26. Liu, X. Q., Y. L. Zhang, Q. K. Li, J. X. Zheng, Y. M. Lu, S. Juodkazis, Q. D. Chen, and H. B. Sun, "Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing," PhotoniX, Vol. 3, 1, 2022.
doi:10.1186/s43074-022-00047-3 Google Scholar
27. Lu, Y. M., Y. Z. Duan, X. Q. Liu, Q. D. Chen, and H. B. Sun, "High-quality rapid laser drilling of transparent hard materials," Opt. Lett., Vol. 47, 921, 2022.
doi:10.1364/OL.452530 Google Scholar
28. Hua, J. G., S. Y. Liang, Q. D. Chen, S. Juodkazis, and H. B. Sun, "Free-form micro-optics out of crystals: Femtosecond laser 3D sculpturing," Adv. Funct. Mate., Vol. 32, 2200255, 2022.
doi:10.1002/adfm.202200255 Google Scholar
29. Liu, Y. Q., J. W. Mao, Z. D. Chen, D. D. Han, Z. Z. Jiao, J. N. Ma, H. B. Jiang, and H. Yang, "Three-dimensional micropatterning of grapheneby femtosecond laser direct writing technology," Opt. Lett., Vol. 45, 1, 2020.
doi:10.1364/OL.45.000001 Google Scholar
30. Gao, S., Z. Z. Li, Z. Y. Hu, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Diamond optical vortex generator processed byultraviolet femtosecond laser," Opt. Lett., Vol. 50, 9, 2020. Google Scholar
31. Gao, S., S. Y. Yin, Z. X. Liu, Z. D. Zhang, Z. N. Tian, Q. D. Chen, N. K. Chen, and H. B. Sun, "Narrow-linewidth diamond single-photon sources prepared via femtosecond laser," Appl. Phys. Lett., Vol. 120, 023104, 2021.
doi:10.1063/5.0079335 Google Scholar
32. Gao, S., Z. N. Tian, P. Yu, H. Y. Sun, H. Fan, Q. D. Chen, and H. B. Sun, "Deep diamond single-photon sources prepared by a femtosecond laser," Opt. Lett., Vol. 46, 4386, 2021.
doi:10.1364/OL.435799 Google Scholar
33. Liu, X. Q., R. Cheng, J. X. Zheng, S. N. Yang, B. X. Wang, B. F. Bai, Q. D. Chen, and H. B. Sun, "Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography," Opt. Lett., Vol. 39, 4690, 2021. Google Scholar
34. Li, Z. Z., X. Y. Li, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses," Opt. Lett., Vol. 46, 520, 2021.
doi:10.1364/OL.414962 Google Scholar
35. Mao, Y. H., D. Zhao, C. F. Zhang, K. Huang, and Y. L. Chen, "A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy," Light Sci. Appl., Vol. 10, 22, 2021.
doi:10.1038/s41377-021-00463-3 Google Scholar
36. Xu, S., H. Fan, Z. Z. Li, J. G. Hua, Y. H. Yu, L. Wang, Q. D. Chen, and H. B. Sun, "Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements," Opt. Lett., Vol. 46, 536, 2021.
doi:10.1364/OL.413177 Google Scholar
37. Liu, X. Q., S. N. Yang, L. Yu, Q. D. Chen, Y. L. Zhang, and H. B. Sun, "Rapid engraving of artificial compound eyes from curved sapphire substrate," Adv. Funct. Mate., Vol. 29, 1900037, 2019.
doi:10.1002/adfm.201900037 Google Scholar
38. Liu, H. G., W. X. Lin, and M. H. Hong, "Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications," Light Sci. Appl., Vol. 10, 162, 2021.
doi:10.1038/s41377-021-00596-5 Google Scholar
39. Zhao, Y., Y. M. Yang, and H. B. Sun, "Nonlinear meta-optics towards applications," PhotoniX, Vol. 2, 3, 2021.
doi:10.1186/s43074-021-00025-1 Google Scholar
40. Lai, P. T., Z. L. Li, W. Wang, J. Qu, L. W. Wu, Z. Zhu, Y. X. Li, J. H. Shi, et al. "Transmissive 2-bit anisotropic coding metasurface," Chin. Phys. B, Vol. 31, 098102, 2022.
doi:10.1088/1674-1056/ac4a6b Google Scholar
41. Dong, G. H., Z. J. Jiang, Y. C. Li, Z. Zhu, Z. H. Liu, J. H. Shi, et al. "Large asymmetric anomalous reflection in bilayer gradient metasurfaces," Opt. Express, Vol. 29, 16796, 2021. Google Scholar
42. Xu, W. X., W. J. Li, Z. Q. Jiang, J. L. Liu, J. H. Shi, et al. "Direction-dependent polarization modulation of Cherenkov diffraction radiation based on metasurfaces," J. Appl. Phys., Vol. 132, 113101, 2022.
doi:10.1063/5.0109322 Google Scholar
43. Li, Z. L., W. Wang, S. X. Deng, J. Qu, Y. X. Li, C. Y. Guan, J. H. Shi, et al. "Active beam manipulation and convolution operationin VO2-integrated coding terahertz metasurfaces," Opt. Lett., Vol. 47, 441, 2022.
doi:10.1364/OL.447377 Google Scholar