Vol. 176
Latest Volume
All Volumes
2022-11-28
Commercial-Printed-Circuitry-Compatible Self-Superhydrophobic Antennas Based on Laser Direct Writing
By
Progress In Electromagnetics Research, Vol. 176, 45-53, 2023
Abstract
Antennas are essential devices to build everything connected in the era of information. However, the quality of communications would be degraded with the presence of raindrops on the antenna surface. Additional antiwater radomes may generate radiation loss and dispersive impedance mismatch over a broad frequency range, which is not acceptable for next-generation communication systems integrating multiple bands. Here, we report the first experimental demonstration of self-hydrophobic antennas that cover the bands of 1.7 GHz, 3.5 GHz, and 8.5 GHz through a laser-direct-writing treatment. Experimental results show that the return loss, radiation pattern, and efficiency of self-superhydrophobic antennas can be maintained in the mimicked rainy weather. Furthermore, writing hydrophobic nanostructures on both dielectrics and metals is compatible with commercial printed circuitry techniques widely used in industries. Our technique will augment the laser fabrication technology for specialized electromagnetic devices and serve as a powerful and generalized solution for all-weather wireless communication systems.
Supplementary Information
Citation
Xiao-Liang Ge, Jun-Hao Yang, Hang Ren, Zhi-Jun Qin, Qi-Dai Chen, Dong-Dong Han, Yong-Lai Zhang, Xu Su, and Hong-Bo Sun, "Commercial-Printed-Circuitry-Compatible Self-Superhydrophobic Antennas Based on Laser Direct Writing," Progress In Electromagnetics Research, Vol. 176, 45-53, 2023.
doi:10.2528/PIER22101108
http://www.jpier.org/PIER/pier.php?paper=22101108
References

1. Vukicevic, A., F. Rachidi, M. Rubinstein, and S. V. Tkachenko, "On the evaluation of antenna-mode currents along transmission lines," IEEE T. Electromagn. C., Vol. 48, 693, 2006.
doi:10.1109/TEMC.2006.884511

2. Qin, Y. F. and D. H. Werner, "Dual-band omnidirectional/unidirectional patch antenna based on multiconductor transmission line theory," IEEE International Symposium on Antennas and Propagation, 17280945, 2017.

3. Morozov, V. M. and V. I. Magro, "Method of analysis of antennas and transmission lines," 6th International Conference on Antenna Theory and Techniques, 9704288, 2007.

4. Frank, G., "An insightful derivation of transmission line equations including electromagnetic field- coupling," 2018 International Symposium on Electromagnetic Compatibility, 18149739, 2018.

5. Gronwald, F., J. Nitsch, and S. Tkachenko, "Generalized transmission line theory as an antenna theory for EMC analysis," Electr. Eng., Vol. 93, 147, 2011.
doi:10.1007/s00202-011-0200-z

6. Lau, B. K., J. B. Andersen, G. Kristensson, and A. F. Molisch, "Impact of matching network on bandwidth of compact antenna arrays," IEEE T. Antenn. Propag., Vol. 54, 3225, 2006.
doi:10.1109/TAP.2006.883984

7. Fei, Y., Y. Fan, B. K. Lau, and J. S. Thompson, "Optimal singleport matching impedance for capacity maximization in compact MIMO arrays," IEEE T. Antenn. Propag., Vol. 56, 3566, 2008.
doi:10.1109/TAP.2008.2005463

8. Tsen, W. F. and H. J. Li, "Uncoupled impedance matching for capacity maximization of compact MIMO arrays," IEEE Antenn. Wirel. Pr., Vol. 8, 1295, 2009.
doi:10.1109/LAWP.2009.2037445

9. Allen, J. C., J. Rockaway, and D. Arceo, Wideband multiport matching phase I: Single-feed multiport antennas, Tech. Rep. SSC/SD-TR-1972, Space and Naval Warfare Systems Center, 2008.

10. Skirelis, J., A. Patlins, N. Kunicina, A. Romanovs, and A. Zabasta, "Wireless sensor networks: Towards resilience against weather-based disruptions," Electr. Control. Commu., Vol. 15, 79, 2019.
doi:10.2478/ecce-2019-0011

11. Li, M., W. J. Lou, and K. Ren, "Data security and privacy in wireless body area networks," IEEE Wirel. Commun., Vol. 17, 51, 2010.
doi:10.1109/MWC.2010.5416350

12. John, F. F., J. J. Ma, and L. Moeller, "Review of weather impact on outdoor terahertz wireless communication links," Nano Commun. Netw., Vol. 10, 13, 2016.
doi:10.1016/j.nancom.2016.07.006

13. Wing, S., "Mobile and wireless communication: Space weather threats, forecasts, and risk management," IT Prof., Vol. 14, 40, 2012.
doi:10.1109/MITP.2012.69

14. Rashed, A. N. Z. and M. M. E. El-Halawany, "Transmission characteristics evaluation under bad weather conditions in optical wireless links with different optical transmission window," Wireless Pers. Commun., Vol. 71, 1577, 2013.
doi:10.1007/s11277-012-0893-y

15. Orta, R., R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE T. Antenn. Propag., Vol. 36, 1707, 1988.
doi:10.1109/8.14392

16. Du, Y. W., Telecommunications Design Method of the Radome, National Defense Industry Press, China, 1993.

17. Li, P., W. Y. Xu, and L. W. Song, "A novel compensation strategy for the radiation characteristics of large dielectric radomes based on phase modification," IEEE Antenn. Wirel. Pr., Vol. 15, 1044, 2016.
doi:10.1109/LAWP.2015.2491298

18. Li, Y. R., X. Jin, W. Li, J. R. Niu, X. Han, X. F. Yang, W. Y. Wang, T. Lin, and Z. T. Zhu, "Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation," Sci. China Mater., Vol. 65, 1057, 2021.
doi:10.1007/s40843-021-1840-3

19. Costa, F. and A. Monorchio, "A frequency selective radome with wideband absorbing properties," IEEE T. Antenn. Propag., Vol. 60, 2740, 2012.
doi:10.1109/TAP.2012.2194640

20. Chen, H. Y., X. Y. Hou, and L. J. Den, "Design of frequency-selective surfaces radome for a planar slotted waveguide antenna," IEEE Antenn. Wirel. Pr., Vol. 8, 1231, 2009.
doi:10.1109/LAWP.2009.2035646

21. Zhou, H., S. B. Qu, B. Q. Lin, and P. Bai, "Filter-antenna consisting of conical FSS radome and monopole antenna," IEEE T. Antenn. Propag., Vol. 60, 3040, 2012.
doi:10.1109/TAP.2012.2194648

22. Ye, D. X., Z. Wang, Z. Y. Wang, K. W. Xu, B. Zhang, J. T. Huangfu, C. Z. Li, and L. X. Ran, "Towards experimental perfectly-matched layers with ultra-thin metamaterial surfaces," IEEE T. Antenn. Propag., Vol. 60, 5164, 2012.
doi:10.1109/TAP.2012.2207686

23. Fang, Y., G. Sun, Y. H. Bi, and H. Zhi, "Multiple-dimensional micro/nano structural models for hydrophobicity of butterfly wing surfaces and coupling mechanism," Sci. Bull., Vol. 60, 256, 2015.
doi:10.1007/s11434-014-0653-3

24. Wang, D. H., Q. Q. Sun, R. H. A. Ras, and X. Deng, "Design of robust superhydrophobic surfaces," Nature, Vol. 582, 55, 2020.
doi:10.1038/s41586-020-2331-8

25. Zhang, W., Y. L. Wu, J. C. Li, M. M. Zou, and H. Y. Zheng, "UV laser-produced copper micro-mesh with superhydrophobic-oleophilic surface for oil-water separation," J. Mater. Res. Technol., Vol. 15, 5733, 2021.
doi:10.1016/j.jmrt.2021.11.016

26. Liu, X. Q., Y. L. Zhang, Q. K. Li, J. X. Zheng, Y. M. Lu, S. Juodkazis, Q. D. Chen, and H. B. Sun, "Biomimetic sapphire windows enabled by inside-out femtosecond laser deep-scribing," PhotoniX, Vol. 3, 1, 2022.
doi:10.1186/s43074-022-00047-3

27. Lu, Y. M., Y. Z. Duan, X. Q. Liu, Q. D. Chen, and H. B. Sun, "High-quality rapid laser drilling of transparent hard materials," Opt. Lett., Vol. 47, 921, 2022.
doi:10.1364/OL.452530

28. Hua, J. G., S. Y. Liang, Q. D. Chen, S. Juodkazis, and H. B. Sun, "Free-form micro-optics out of crystals: Femtosecond laser 3D sculpturing," Adv. Funct. Mate., Vol. 32, 2200255, 2022.
doi:10.1002/adfm.202200255

29. Liu, Y. Q., J. W. Mao, Z. D. Chen, D. D. Han, Z. Z. Jiao, J. N. Ma, H. B. Jiang, and H. Yang, "Three-dimensional micropatterning of grapheneby femtosecond laser direct writing technology," Opt. Lett., Vol. 45, 1, 2020.
doi:10.1364/OL.45.000001

30. Gao, S., Z. Z. Li, Z. Y. Hu, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Diamond optical vortex generator processed byultraviolet femtosecond laser," Opt. Lett., Vol. 50, 9, 2020.

31. Gao, S., S. Y. Yin, Z. X. Liu, Z. D. Zhang, Z. N. Tian, Q. D. Chen, N. K. Chen, and H. B. Sun, "Narrow-linewidth diamond single-photon sources prepared via femtosecond laser," Appl. Phys. Lett., Vol. 120, 023104, 2021.
doi:10.1063/5.0079335

32. Gao, S., Z. N. Tian, P. Yu, H. Y. Sun, H. Fan, Q. D. Chen, and H. B. Sun, "Deep diamond single-photon sources prepared by a femtosecond laser," Opt. Lett., Vol. 46, 4386, 2021.
doi:10.1364/OL.435799

33. Liu, X. Q., R. Cheng, J. X. Zheng, S. N. Yang, B. X. Wang, B. F. Bai, Q. D. Chen, and H. B. Sun, "Wear-resistant blazed gratings fabricated by etching-assisted femtosecond laser lithography," Opt. Lett., Vol. 39, 4690, 2021.

34. Li, Z. Z., X. Y. Li, F. Yu, Q. D. Chen, Z. N. Tian, and H. B. Sun, "Circular cross section waveguides processed by multi-foci-shaped femtosecond pulses," Opt. Lett., Vol. 46, 520, 2021.
doi:10.1364/OL.414962

35. Mao, Y. H., D. Zhao, C. F. Zhang, K. Huang, and Y. L. Chen, "A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy," Light Sci. Appl., Vol. 10, 22, 2021.
doi:10.1038/s41377-021-00463-3

36. Xu, S., H. Fan, Z. Z. Li, J. G. Hua, Y. H. Yu, L. Wang, Q. D. Chen, and H. B. Sun, "Ultrafast laser-inscribed nanogratings in sapphire for geometric phase elements," Opt. Lett., Vol. 46, 536, 2021.
doi:10.1364/OL.413177

37. Liu, X. Q., S. N. Yang, L. Yu, Q. D. Chen, Y. L. Zhang, and H. B. Sun, "Rapid engraving of artificial compound eyes from curved sapphire substrate," Adv. Funct. Mate., Vol. 29, 1900037, 2019.
doi:10.1002/adfm.201900037

38. Liu, H. G., W. X. Lin, and M. H. Hong, "Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications," Light Sci. Appl., Vol. 10, 162, 2021.
doi:10.1038/s41377-021-00596-5

39. Zhao, Y., Y. M. Yang, and H. B. Sun, "Nonlinear meta-optics towards applications," PhotoniX, Vol. 2, 3, 2021.
doi:10.1186/s43074-021-00025-1

40. Lai, P. T., et al., "Transmissive 2-bit anisotropic coding metasurface," Chin. Phys. B, Vol. 31, 098102, 2022.
doi:10.1088/1674-1056/ac4a6b

41. Dong, G. H., et al., "Large asymmetric anomalous reflection in bilayer gradient metasurfaces," Opt. Express, Vol. 29, 16796, 2021.

42. Xu, W. X., et al., "Direction-dependent polarization modulation of Cherenkov diffraction radiation based on metasurfaces," J. Appl. Phys., Vol. 132, 113101, 2022.
doi:10.1063/5.0109322

43. Li, Z. L., et al., "Active beam manipulation and convolution operationin VO2-integrated coding terahertz metasurfaces," Opt. Lett., Vol. 47, 441, 2022.
doi:10.1364/OL.447377