1. Ma, X., Z. Wang, X. Chen, Y. Li, and G. R. Arce, "Gradient-based source mask optimization for extreme ultraviolet lithography," IEEE Trans. Comput. Imag., Vol. 5, No. 1, Mar. 2019. Google Scholar
2. Erdmann, A., P. Evanschitzky, F. Shao, T. Fühner, G. F. Lorusso, E. Hendrickx, M. Goethals, R. Jonckheere, T. Bret, and T. Hofmann, "Predictive modeling for EUV-lithography: The role of mask, optics, and photoresist effects," Proc. SPIE, Vol. 8171, No. 37, 23-33, Oct. 2011. Google Scholar
3. Cain, J., P. Naulleau, and C. Spanos, "Modeling of EUV photoresists witha resist point spread function," Proc. SPIE, Vol. 5751, 1101-1109, 2005.
doi:10.1117/12.600439 Google Scholar
4. Ma, X., J. Wang, X. Chen, Y. Li, and G. R. Arce, "Gradient-based inverseextreme ultraviolet lithography," Appl. Opt., Vol. 54, No. 24, 7284-300, Aug. 2015.
doi:10.1364/AO.54.007284 Google Scholar
5. Song, H., L. Zavyalova, I. Su, J. Shiely, and T. Schmoeller, "Shadowing effect modeling and compensation for EUV lithography," Proc. SPIE, Vol. 7969, No. 79691O, 2011. Google Scholar
6. Ma, X. and G. R. Arce, Computational Lithography, 1st Ed., Wiley Series in Pure and Applied Optics, John Wiley and Sons, New York, 2010.
doi:10.1002/9780470618943
7. Poonawala, A. and P. Milanfar, "Double-exposure mask synthesis using inverse lithography," Journal of Microlithography Microfabrication & Microsystems, Vol. 6, No. 4, 241-246, 2007. Google Scholar
8. Cobb, N. and D. Dudau, "Dense OPC and verification for 45 nm," Proc. SPIE, Vol. 6154, No. 61540I, Mar. 2006. Google Scholar
9. Sherif, S., B. Saleh, and R. Leone, "Binary image synthesis using mixed integer programming," EEE Trans. on Image Proc., Vol. 4, 1252-1257, 1995.
doi:10.1109/83.413169 Google Scholar
10. Liu, Y. and A. Zakhor, "Binary and phase shifting mask design for optical lithography," IEEE Trans. Semicond. Manuf., Vol. 5, No. 2, 138-152, 1992.
doi:10.1109/66.136275 Google Scholar
11. Granik, Y., "Solving inverse problems of optical microlithography," Proc. SPIE, Vol. 5754, 506-526, 2004. Google Scholar
12. Granik, Y., "Fast pixel-based mask optimization for inverse lithography," J. Microlith. Microfab. Microsyst., Vol. 5, No. 4, 043002, 2006. Google Scholar
13. Jia, N., A. K. Wong, and E. Y. Lam, "Robust mask design with defocus variation using inverse synthesis," Proc. SPIE, Lithography Asia, Vol. 7714, No. 71401W, 2008. Google Scholar
14. Shen, Y., N. Jia, N. Wong, and E. Y. Lam, "Robust level-set-based inverse lithography," Opt. Express, Vol. 19, No. 6, 5511-5521, 2011.
doi:10.1364/OE.19.005511 Google Scholar
15. Shen, Y., N. Wong, and E. Y. Lam, "Aberration-aware robust mask design with level-set-based inverse lithography," Proc. SPIE, Vol. 7748, No. 77481U, 2010. Google Scholar
16. Wong, A. K., Resolution Enhancement Techniques in Optical Lithography, SPIE Press, 2001.
doi:10.1117/3.401208
17. Frye, R., E. Rietman, and K. Cummings, "Neural network proximity effect corrections for electron beam lithography," IEEE International Conference on Systems, Man and Cybernetics Conference Proceedings, 704-706, 1990.
doi:10.1109/ICSMC.1990.142210 Google Scholar
18. Jedrasik, P., "Neural networks application for OPC (optical proximity correction) in mask making," Microelectron. Eng., Vol. 30, 1-4, 1996. Google Scholar
19. Huang, W. C., C. M. Lai, B. Luo, C. K. Tsai, M. H. Chih, C. W. Lai, C. C. Kuo, R. G. Liu, and H. T. Lin, "Intelligent model-based OPC," Proc. SPIE, Vol. 6154, 1065-1073, 2006. Google Scholar
20. Zeng, N., P. Wu, Z. Wang, H. Li, W. Liu, and X. Liu, "A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection," IEEE Trans. Instrum. Meas., Vol. 71, Article No. 3507014, 2022. Google Scholar
21. Mao, Y., Q. Zhan, R. Zhang, D. Wang, W.-F. Huang, and Q. H. Liu, "Fast simulation of electromagnetic fields in doubly periodic structures with a deep fully convolutional network," IEEE Trans. Antennas Propag., Vol. 69, No. 5, 2921-2928, 2021.
doi:10.1109/TAP.2020.3030940 Google Scholar
22. Shim, S., S. Choi, and Y. Shin, "Machine learning (ML)-based lithography optimizations," 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, South Korea, 2016. Google Scholar
23. Park, J. W., A. Torres, and X. Song, "Litho-Aware machine learning for hotspot detection," IEEE Trans. on Comp.-Aided Design of Integrated Circuits and Systems, Vol. 37, No. 7, 1510-1514, Jul. 2018.
doi:10.1109/TCAD.2017.2750068 Google Scholar
24. Ma, X., S. Jiang, J. Wang, B. Wu, Z. Song, and Y. Li, "A fast and manufacture-friendly optical proximity correction based on machine learning," Microelectron. Eng., Vol. 168, 15-26, 2017.
doi:10.1016/j.mee.2016.10.006 Google Scholar
25. Mao, Y., J. Niu, Q. Zhan, R. Zhang, W.-F. Huang, and Q. H. Liu, "Calderόn preconditioned spectral-element spectral-integral method for doubly periodic structures in layered media," IEEE Trans. Antennas Propag., Vol. 68, No. 7, 5524-5533, Jul. 2020.
doi:10.1109/TAP.2020.2976584 Google Scholar
26. Ronneberger, O., P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical Image Computing and Computer-assisted Intervention, 234-241, Springer, 2015. Google Scholar
27., http://www.wavenology.com/?page id=66. Google Scholar