Vol. 176
Latest Volume
All Volumes
2022-11-27
Highly Transparent Tunable Microwave Perfect Absorption for Broadband Microwave Shielding
By
Progress In Electromagnetics Research, Vol. 176, 35-44, 2023
Abstract
To shield undesirable microwave radiation to protect electronic systems and human health, microwave perfect absorbers have attracted increasing interests in recent years. However, the opaque or semitransparent nature of most implemented microwave absorbers limit their applications in optics. Here, we demonstrate a high-performance microwave absorber based on an impedance-assisted Fabry-Pérot resonant cavity with an ITO-dielectric-ITO structure without complex nanofabrication. The device features near-unity absorption (99.5% at 14.4 GHz with a 4.5 GHz effective bandwidth), excellent electromagnetic interference shielding performance (24 dB) in the Ku-band, and high optical transparency (89.0% from 400 nm to 800 nm). The peak absorption frequency of the device can be tuned by changing the thickness of glass slab and sheet resistance of ITO films. Our work provides a low-cost and feasible solution for highperformance optically transparent microwave shielding and stealth, paving the way towards applications in areas of microwave and optics.
Citation
Dongdong Li, Xiaojun Hu, Bingtao Gao, Wen-Yan Yin, Hongsheng Chen, and Haoliang Qian, "Highly Transparent Tunable Microwave Perfect Absorption for Broadband Microwave Shielding," Progress In Electromagnetics Research, Vol. 176, 35-44, 2023.
doi:10.2528/PIER22101901
References

1. Ma, L., Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Appl. Mater. Interfaces, Vol. 9, 34221-34229, 2017.
doi:10.1021/acsami.7b09372

2. Zhu, X., J. Xu, F. Qin, Z. Yan, A. Guo, and C. Kan, "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G

3. Yang, H., L. Wang, H. Wang, Y. Zhang, Z. Su, Z. Su, J. Zhang, Z. Lu, D. Jia, and P. Hu, "Transparent and high-absolute-effectiveness electromagnetic interference shielding film based on single-crystal graphene," Adv. Mater. Technol., Vol. 7, 2101465, 2022.
doi:10.1002/admt.202101465

4. Shu, J., W. Cao, and M. Cao, "Diverse metal-organic framework architectures for electromagnetic absorbers and shielding," Adv. Funct. Mater., Vol. 31, 2100470, 2021.
doi:10.1002/adfm.202100470

5. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircraft Engineering and Aerospace Technology, Vol. 93, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126

6. Li, Y., X. Tian, S. P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J. Y. Lee, Y. X. Guo, and J. S. Ho, "Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication," Adv. Funct. Mater., Vol. 30, 1907451, 2020.
doi:10.1002/adfm.201907451

7. Chen, H., Y. Wen, Y. Qi, Q. Zhao, L. Qu, and C. Li, "Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength," Adv. Funct. Mater., Vol. 30, 1906996, 2020.
doi:10.1002/adfm.201906996

8. Lipatov, A., H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, "Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers," Sci. Adv., Vol. 4, eaat0491, 2018.
doi:10.1126/sciadv.aat0491

9. Shahzad, F., M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, Vol. 353, 1137-1140, 2016.
doi:10.1126/science.aag2421

10. Wen, B., M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, and W. Wang, "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Adv. Mater., Vol. 26, 3484-3489, 2014.
doi:10.1002/adma.201400108

11. Grande, M., G. Bianco, M. Vincenti, D. De Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, and A. D'orazio, "Optically transparent microwave screens based on engineered graphene layers," Opt. Express, Vol. 24, 22788-22795, 2016.
doi:10.1364/OE.24.022788

12. Wang, H., Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Opt. Lett., Vol. 42, 1620-1623, 2017.
doi:10.1364/OL.42.001620

13. Wang, H., Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, Z. Lu, J. Tan, and L. J. Guo, "Transparent perfect microwave absorber employing asymmetric resonance cavity," Adv. Sci., Vol. 6, 1901320, 2019.
doi:10.1002/advs.201901320

14. Wang, W., B. Bai, Q. Zhou, K. Ni, and H. Lin, "Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction," Opt. Mater. Express, Vol. 8, 3485-3493, 2018.
doi:10.1364/OME.8.003485

15. Jiang, Z.-Y., W. Huang, L.-S. Chen, and Y.-H. Liu, "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Opt. Express, Vol. 27, 24194-24206, 2019.
doi:10.1364/OE.27.024194

16. Han, Y., H. Zhong, N. Liu, Y. Liu, J. Lin, and P. Jin, "In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding," Adv. Electron. Mater., Vol. 4, 1800156, 2018.
doi:10.1002/aelm.201800156

17. Ma, X., Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, and W. Zheng, "Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding," ACS Appl. Mater. Interfaces, Vol. 10, 38255-38263, 2018.
doi:10.1021/acsami.8b15545

18. Wang, C., V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, and S. Angaiah, "Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding," Carbon, Vol. 140, 696-733, 2018.
doi:10.1016/j.carbon.2018.09.006

19. Kim, Y., S.-K. Hyeong, Y. Choi, S.-K. Lee, J.-H. Lee, and H. K. Yu, "Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering," ACS Appl. Mater. Interfaces, Vol. 13, 61413, 2021.
doi:10.1021/acsami.1c17967

20. Reshi, H. A., A. P. Singh, S. Pillai, R. S. Yadav, S. K. Dhawan, and V. Shelke, "Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range," J. Mater. Chem. C, Vol. 3, 820-827, 2015.
doi:10.1039/C4TC02040E

21. Wang, A., W. Wang, C. Long, W. Li, J. Guan, H. Gu, and G. Xu, "Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes," J. Mater. Chem. C, Vol. 2, 3769-3776, 2014.
doi:10.1039/C4TC00108G

22. Kong, L. B., Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, C. Tang, P. Tan, C. Deng, and S. Matitsine, "Recent progress in some composite materials and structures for specific electromagnetic applications," Int. Mater. Rev., Vol. 58, 203-259, 2013.
doi:10.1179/1743280412Y.0000000011

23. Hu, D., J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Adv. Optical Mater., Vol. 5, 1700109, 2017.
doi:10.1002/adom.201700109

24. Jang, T., H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," ACS Photonics, Vol. 1, 279-284, 2014.
doi:10.1021/ph400172u

25. Gupta, N. K., G. Singh, H. Wanare, S. A. Ramakrishna, K. V. Srivastava, and J. Ramkumar, "A low-profile consolidated metastructure for multispectral signature management," J. Opt., Vol. 24, 035102, 2022.
doi:10.1088/2040-8986/ac4ab9

26. Lu, Z., L. Ma, J. Tan, H. Wang, and X. Ding, "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
doi:10.1039/C6NR02619B

27. Wang, H., Y. Zhang, C. Ji, C. Zhang, Z. Lu, Y. Liu, Z. Cao, J. Yuan, J. Tan, and L. J. Guo, "High-performance transparent broadband microwave absorbers," Adv. Mater. Interfaces, Vol. 9, 2101714, 2022.
doi:10.1002/admi.202101714

28. Shi, K., F. Bao, and S. He, "Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures," ACS Photonics, Vol. 4, 971-978, 2017.
doi:10.1021/acsphotonics.7b00037

29. Zhang, C., X. Wu, C. Huang, J. Peng, C. Ji, J. Yang, Y. Huang, Y. Guo, and X. Luo, "Flexible and transparent microwave-infrared bistealth structure," Adv. Mater. Technol., Vol. 4, 1900063, 2019.
doi:10.1002/admt.201900063

30. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017.
doi:10.1063/1.4979543

31. Ma, L., H. Xu, Z. Lu, and J. Tan, "Optically transparent broadband microwave absorber by graphene and metallic rings," ACS Appl. Mater. Interfaces, Vol. 14, 17727-17738, 2022.
doi:10.1021/acsami.1c24571

32. Kasap, S. O. and P. Capper, Springer Handbook of Electronic and Photonic Materials, 11, Springer, 2006.

33. Araz, I. and F. Genc, "Development of broadband microwave absorber and measurement of its magnetic and microwave properties," J. Supercond. Novel Magn., Vol. 31, 279-283, 2018.
doi:10.1007/s10948-017-4216-0