1. Ma, L., Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Appl. Mater. Interfaces, Vol. 9, 34221-34229, 2017.
doi:10.1021/acsami.7b09372 Google Scholar
2. Zhu, X., J. Xu, F. Qin, Z. Yan, A. Guo, and C. Kan, "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G Google Scholar
3. Yang, H., L. Wang, H. Wang, Y. Zhang, Z. Su, Z. Su, J. Zhang, Z. Lu, D. Jia, and P. Hu, "Transparent and high-absolute-effectiveness electromagnetic interference shielding film based on single-crystal graphene," Adv. Mater. Technol., Vol. 7, 2101465, 2022.
doi:10.1002/admt.202101465 Google Scholar
4. Shu, J., W. Cao, and M. Cao, "Diverse metal-organic framework architectures for electromagnetic absorbers and shielding," Adv. Funct. Mater., Vol. 31, 2100470, 2021.
doi:10.1002/adfm.202100470 Google Scholar
5. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircraft Engineering and Aerospace Technology, Vol. 93, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126 Google Scholar
6. Li, Y., X. Tian, S. P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J. Y. Lee, Y. X. Guo, and J. S. Ho, "Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication," Adv. Funct. Mater., Vol. 30, 1907451, 2020.
doi:10.1002/adfm.201907451 Google Scholar
7. Chen, H., Y. Wen, Y. Qi, Q. Zhao, L. Qu, and C. Li, "Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength," Adv. Funct. Mater., Vol. 30, 1906996, 2020.
doi:10.1002/adfm.201906996 Google Scholar
8. Lipatov, A., H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, "Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers," Sci. Adv., Vol. 4, eaat0491, 2018.
doi:10.1126/sciadv.aat0491 Google Scholar
9. Shahzad, F., M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, Vol. 353, 1137-1140, 2016.
doi:10.1126/science.aag2421 Google Scholar
10. Wen, B., M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, and W. Wang, "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Adv. Mater., Vol. 26, 3484-3489, 2014.
doi:10.1002/adma.201400108 Google Scholar
11. Grande, M., G. Bianco, M. Vincenti, D. De Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, and A. D'orazio, "Optically transparent microwave screens based on engineered graphene layers," Opt. Express, Vol. 24, 22788-22795, 2016.
doi:10.1364/OE.24.022788 Google Scholar
12. Wang, H., Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Opt. Lett., Vol. 42, 1620-1623, 2017.
doi:10.1364/OL.42.001620 Google Scholar
13. Wang, H., Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, Z. Lu, J. Tan, and L. J. Guo, "Transparent perfect microwave absorber employing asymmetric resonance cavity," Adv. Sci., Vol. 6, 1901320, 2019.
doi:10.1002/advs.201901320 Google Scholar
14. Wang, W., B. Bai, Q. Zhou, K. Ni, and H. Lin, "Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction," Opt. Mater. Express, Vol. 8, 3485-3493, 2018.
doi:10.1364/OME.8.003485 Google Scholar
15. Jiang, Z.-Y., W. Huang, L.-S. Chen, and Y.-H. Liu, "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Opt. Express, Vol. 27, 24194-24206, 2019.
doi:10.1364/OE.27.024194 Google Scholar
16. Han, Y., H. Zhong, N. Liu, Y. Liu, J. Lin, and P. Jin, "In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding," Adv. Electron. Mater., Vol. 4, 1800156, 2018.
doi:10.1002/aelm.201800156 Google Scholar
17. Ma, X., Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, and W. Zheng, "Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding," ACS Appl. Mater. Interfaces, Vol. 10, 38255-38263, 2018.
doi:10.1021/acsami.8b15545 Google Scholar
18. Wang, C., V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, and S. Angaiah, "Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding," Carbon, Vol. 140, 696-733, 2018.
doi:10.1016/j.carbon.2018.09.006 Google Scholar
19. Kim, Y., S.-K. Hyeong, Y. Choi, S.-K. Lee, J.-H. Lee, and H. K. Yu, "Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering," ACS Appl. Mater. Interfaces, Vol. 13, 61413, 2021.
doi:10.1021/acsami.1c17967 Google Scholar
20. Reshi, H. A., A. P. Singh, S. Pillai, R. S. Yadav, S. K. Dhawan, and V. Shelke, "Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range," J. Mater. Chem. C, Vol. 3, 820-827, 2015.
doi:10.1039/C4TC02040E Google Scholar
21. Wang, A., W. Wang, C. Long, W. Li, J. Guan, H. Gu, and G. Xu, "Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes," J. Mater. Chem. C, Vol. 2, 3769-3776, 2014.
doi:10.1039/C4TC00108G Google Scholar
22. Kong, L. B., Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, C. Tang, P. Tan, C. Deng, and S. Matitsine, "Recent progress in some composite materials and structures for specific electromagnetic applications," Int. Mater. Rev., Vol. 58, 203-259, 2013.
doi:10.1179/1743280412Y.0000000011 Google Scholar
23. Hu, D., J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Adv. Optical Mater., Vol. 5, 1700109, 2017.
doi:10.1002/adom.201700109 Google Scholar
24. Jang, T., H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," ACS Photonics, Vol. 1, 279-284, 2014.
doi:10.1021/ph400172u Google Scholar
25. Gupta, N. K., G. Singh, H. Wanare, S. A. Ramakrishna, K. V. Srivastava, and J. Ramkumar, "A low-profile consolidated metastructure for multispectral signature management," J. Opt., Vol. 24, 035102, 2022.
doi:10.1088/2040-8986/ac4ab9 Google Scholar
26. Lu, Z., L. Ma, J. Tan, H. Wang, and X. Ding, "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
doi:10.1039/C6NR02619B Google Scholar
27. Wang, H., Y. Zhang, C. Ji, C. Zhang, Z. Lu, Y. Liu, Z. Cao, J. Yuan, J. Tan, and L. J. Guo, "High-performance transparent broadband microwave absorbers," Adv. Mater. Interfaces, Vol. 9, 2101714, 2022.
doi:10.1002/admi.202101714 Google Scholar
28. Shi, K., F. Bao, and S. He, "Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures," ACS Photonics, Vol. 4, 971-978, 2017.
doi:10.1021/acsphotonics.7b00037 Google Scholar
29. Zhang, C., X. Wu, C. Huang, J. Peng, C. Ji, J. Yang, Y. Huang, Y. Guo, and X. Luo, "Flexible and transparent microwave-infrared bistealth structure," Adv. Mater. Technol., Vol. 4, 1900063, 2019.
doi:10.1002/admt.201900063 Google Scholar
30. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017.
doi:10.1063/1.4979543 Google Scholar
31. Ma, L., H. Xu, Z. Lu, and J. Tan, "Optically transparent broadband microwave absorber by graphene and metallic rings," ACS Appl. Mater. Interfaces, Vol. 14, 17727-17738, 2022.
doi:10.1021/acsami.1c24571 Google Scholar
32. Kasap, S. O. and P. Capper, Springer Handbook of Electronic and Photonic Materials, 11, Springer, 2006.
33. Araz, I. and F. Genc, "Development of broadband microwave absorber and measurement of its magnetic and microwave properties," J. Supercond. Novel Magn., Vol. 31, 279-283, 2018.
doi:10.1007/s10948-017-4216-0 Google Scholar