Vol. 176
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2022-11-27
Highly Transparent Tunable Microwave Perfect Absorption for Broadband Microwave Shielding
By
Progress In Electromagnetics Research, Vol. 176, 35-44, 2023
Abstract
To shield undesirable microwave radiation to protect electronic systems and human health, microwave perfect absorbers have attracted increasing interests in recent years. However, the opaque or semitransparent nature of most implemented microwave absorbers limit their applications in optics. Here, we demonstrate a high-performance microwave absorber based on an impedance-assisted Fabry-Pérot resonant cavity with an ITO-dielectric-ITO structure without complex nanofabrication. The device features near-unity absorption (99.5% at 14.4 GHz with a 4.5 GHz effective bandwidth), excellent electromagnetic interference shielding performance (24 dB) in the Ku-band, and high optical transparency (89.0% from 400 nm to 800 nm). The peak absorption frequency of the device can be tuned by changing the thickness of glass slab and sheet resistance of ITO films. Our work provides a low-cost and feasible solution for highperformance optically transparent microwave shielding and stealth, paving the way towards applications in areas of microwave and optics.
Supplementary Information
Citation
Dongdong Li Xiaojun Hu Bingtao Gao Wen-Yan Yin Hongsheng Chen Haoliang Qian , "Highly Transparent Tunable Microwave Perfect Absorption for Broadband Microwave Shielding," Progress In Electromagnetics Research, Vol. 176, 35-44, 2023.
doi:10.2528/PIER22101901
http://www.jpier.org/PIER/pier.php?paper=22101901
References

1. Ma, L., Z. Lu, J. Tan, J. Liu, X. Ding, N. Black, T. Li, J. Gallop, and L. Hao, "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Appl. Mater. Interfaces, Vol. 9, 34221-34229, 2017.
doi:10.1021/acsami.7b09372

2. Zhu, X., J. Xu, F. Qin, Z. Yan, A. Guo, and C. Kan, "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
doi:10.1039/D0NR03790G

3. Yang, H., L. Wang, H. Wang, Y. Zhang, Z. Su, Z. Su, J. Zhang, Z. Lu, D. Jia, and P. Hu, "Transparent and high-absolute-effectiveness electromagnetic interference shielding film based on single-crystal graphene," Adv. Mater. Technol., Vol. 7, 2101465, 2022.
doi:10.1002/admt.202101465

4. Shu, J., W. Cao, and M. Cao, "Diverse metal-organic framework architectures for electromagnetic absorbers and shielding," Adv. Funct. Mater., Vol. 31, 2100470, 2021.
doi:10.1002/adfm.202100470

5. Bakal, F., A. Yapici, M. Karaaslan, and O. Akgol, "Microwave absorption performance of hexagonal nano boron nitride doped basalt fabric-reinforced epoxy composites," Aircraft Engineering and Aerospace Technology, Vol. 93, 205-211, 2021.
doi:10.1108/AEAT-06-2020-0126

6. Li, Y., X. Tian, S. P. Gao, L. Jing, K. Li, H. Yang, F. Fu, J. Y. Lee, Y. X. Guo, and J. S. Ho, "Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication," Adv. Funct. Mater., Vol. 30, 1907451, 2020.
doi:10.1002/adfm.201907451

7. Chen, H., Y. Wen, Y. Qi, Q. Zhao, L. Qu, and C. Li, "Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength," Adv. Funct. Mater., Vol. 30, 1906996, 2020.
doi:10.1002/adfm.201906996

8. Lipatov, A., H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, and A. Sinitskii, "Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers," Sci. Adv., Vol. 4, eaat0491, 2018.
doi:10.1126/sciadv.aat0491

9. Shahzad, F., M. Alhabeb, C. B. Hatter, B. Anasori, S. M. Hong, C. M. Koo, and Y. Gogotsi, "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)," Science, Vol. 353, 1137-1140, 2016.
doi:10.1126/science.aag2421

10. Wen, B., M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, and W. Wang, "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Adv. Mater., Vol. 26, 3484-3489, 2014.
doi:10.1002/adma.201400108

11. Grande, M., G. Bianco, M. Vincenti, D. De Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, and A. D'orazio, "Optically transparent microwave screens based on engineered graphene layers," Opt. Express, Vol. 24, 22788-22795, 2016.
doi:10.1364/OE.24.022788

12. Wang, H., Z. Lu, Y. Liu, J. Tan, L. Ma, and S. Lin, "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Opt. Lett., Vol. 42, 1620-1623, 2017.
doi:10.1364/OL.42.001620

13. Wang, H., Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, Z. Lu, J. Tan, and L. J. Guo, "Transparent perfect microwave absorber employing asymmetric resonance cavity," Adv. Sci., Vol. 6, 1901320, 2019.
doi:10.1002/advs.201901320

14. Wang, W., B. Bai, Q. Zhou, K. Ni, and H. Lin, "Petal-shaped metallic mesh with high electromagnetic shielding efficiency and smoothed uniform diffraction," Opt. Mater. Express, Vol. 8, 3485-3493, 2018.
doi:10.1364/OME.8.003485

15. Jiang, Z.-Y., W. Huang, L.-S. Chen, and Y.-H. Liu, "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Opt. Express, Vol. 27, 24194-24206, 2019.
doi:10.1364/OE.27.024194

16. Han, Y., H. Zhong, N. Liu, Y. Liu, J. Lin, and P. Jin, "In situ surface oxidized copper mesh electrodes for high-performance transparent electrical heating and electromagnetic interference shielding," Adv. Electron. Mater., Vol. 4, 1800156, 2018.
doi:10.1002/aelm.201800156

17. Ma, X., Y. Li, B. Shen, L. Zhang, Z. Chen, Y. Liu, W. Zhai, and W. Zheng, "Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding," ACS Appl. Mater. Interfaces, Vol. 10, 38255-38263, 2018.
doi:10.1021/acsami.8b15545

18. Wang, C., V. Murugadoss, J. Kong, Z. He, X. Mai, Q. Shao, Y. Chen, L. Guo, C. Liu, and S. Angaiah, "Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding," Carbon, Vol. 140, 696-733, 2018.
doi:10.1016/j.carbon.2018.09.006

19. Kim, Y., S.-K. Hyeong, Y. Choi, S.-K. Lee, J.-H. Lee, and H. K. Yu, "Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering," ACS Appl. Mater. Interfaces, Vol. 13, 61413, 2021.
doi:10.1021/acsami.1c17967

20. Reshi, H. A., A. P. Singh, S. Pillai, R. S. Yadav, S. K. Dhawan, and V. Shelke, "Nanostructured La0.7Sr0.3MnO3 compounds for effective electromagnetic interference shielding in the X-band frequency range," J. Mater. Chem. C, Vol. 3, 820-827, 2015.
doi:10.1039/C4TC02040E

21. Wang, A., W. Wang, C. Long, W. Li, J. Guan, H. Gu, and G. Xu, "Facile preparation, formation mechanism and microwave absorption properties of porous carbonyl iron flakes," J. Mater. Chem. C, Vol. 2, 3769-3776, 2014.
doi:10.1039/C4TC00108G

22. Kong, L. B., Z. Li, L. Liu, R. Huang, M. Abshinova, Z. Yang, C. Tang, P. Tan, C. Deng, and S. Matitsine, "Recent progress in some composite materials and structures for specific electromagnetic applications," Int. Mater. Rev., Vol. 58, 203-259, 2013.
doi:10.1179/1743280412Y.0000000011

23. Hu, D., J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, "Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators," Adv. Optical Mater., Vol. 5, 1700109, 2017.
doi:10.1002/adom.201700109

24. Jang, T., H. Youn, Y. J. Shin, and L. J. Guo, "Transparent and flexible polarization-independent microwave broadband absorber," ACS Photonics, Vol. 1, 279-284, 2014.
doi:10.1021/ph400172u

25. Gupta, N. K., G. Singh, H. Wanare, S. A. Ramakrishna, K. V. Srivastava, and J. Ramkumar, "A low-profile consolidated metastructure for multispectral signature management," J. Opt., Vol. 24, 035102, 2022.
doi:10.1088/2040-8986/ac4ab9

26. Lu, Z., L. Ma, J. Tan, H. Wang, and X. Ding, "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
doi:10.1039/C6NR02619B

27. Wang, H., Y. Zhang, C. Ji, C. Zhang, Z. Lu, Y. Liu, Z. Cao, J. Yuan, J. Tan, and L. J. Guo, "High-performance transparent broadband microwave absorbers," Adv. Mater. Interfaces, Vol. 9, 2101714, 2022.
doi:10.1002/admi.202101714

28. Shi, K., F. Bao, and S. He, "Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures," ACS Photonics, Vol. 4, 971-978, 2017.
doi:10.1021/acsphotonics.7b00037

29. Zhang, C., X. Wu, C. Huang, J. Peng, C. Ji, J. Yang, Y. Huang, Y. Guo, and X. Luo, "Flexible and transparent microwave-infrared bistealth structure," Adv. Mater. Technol., Vol. 4, 1900063, 2019.
doi:10.1002/admt.201900063

30. Zhang, C., Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, "Broadband metamaterial for optical transparency and microwave absorption," Appl. Phys. Lett., Vol. 110, 143511, 2017.
doi:10.1063/1.4979543

31. Ma, L., H. Xu, Z. Lu, and J. Tan, "Optically transparent broadband microwave absorber by graphene and metallic rings," ACS Appl. Mater. Interfaces, Vol. 14, 17727-17738, 2022.
doi:10.1021/acsami.1c24571

32. Kasap, S. O. and P. Capper, Springer Handbook of Electronic and Photonic Materials, 11, Springer, 2006.

33. Araz, I. and F. Genc, "Development of broadband microwave absorber and measurement of its magnetic and microwave properties," J. Supercond. Novel Magn., Vol. 31, 279-283, 2018.
doi:10.1007/s10948-017-4216-0