1. Ward, J. L., P. S. Azzopardi, K. L. Francis, et al. "Global, regional, and national mortality among young people aged 10{24 years, 1950{2019: A systematic analysis for the Global Burden of Disease Study 2019," Lancet, Vol. 398, 1593-1618, 2021.
doi:10.1016/S0140-6736(21)01546-4 Google Scholar
2. Beutlich, J., J. A. Hammerl, B. Appel, et al. "Characterization of illegal food items and identification of foodborne pathogens brought into the European Union via two major German airports," International Journal of Food Microbiology, Vol. 209, 13-19, 2015.
doi:10.1016/j.ijfoodmicro.2014.10.017 Google Scholar
3. Galanis, E., J. Parmley, W. N. De, et al. "Integrated surveillance of Salmonella along the food chain using existing data and resources in British Columbia, Canada," Food Research International, Vol. 45, No. 2, 795-801, 2012.
doi:10.1016/j.foodres.2011.04.015 Google Scholar
4. Kumar, A., P. Ellis, Y. Arabi, et al. "Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock," Chest, Vol. 136, No. 5, 1237-1248, 2009.
doi:10.1378/chest.09-0087 Google Scholar
5. Gan, Y., C. Li, X. Peng, et al. "Fight bacteria with bacteria: Bacterial membrane vesicles as vaccines and delivery nanocarriers against bacterial infections," Nanomedicine-Nanotechnology Biology and Medicine, Vol. 35, 102398, 2021.
doi:10.1016/j.nano.2021.102398 Google Scholar
6. Fratamico, P. M., "Comparison of culture, polymerase chain reaction (PCR), TaqMan Salmonella, and Transia Card Salmonella assays for detection of Salmonella spp. in naturally-contaminated ground chicken, ground turkey, and ground beef," Molecular and Cellular Probes, Vol. 17, No. 5, 215-221, 2003.
doi:10.1016/S0890-8508(03)00056-2 Google Scholar
7. Bolton, F. J., E. Fritz, S. Poynton, et al. "Rapid enzyme-linked immunoassay for detection of salmonella in food and feed products: Performance testing program," Journal of Aoac International, Vol. 83, No. 2, 299-303, 2000.
doi:10.1093/jaoac/83.2.299 Google Scholar
8. Compton, J., "Nucleic acid sequence-based amplification," Nature, Vol. 350, No. 6313, 91-92, 1991.
doi:10.1038/350091a0 Google Scholar
9. Engelmann, I., E. K. Alidjinou, J. Ogiez, et al. "Preanalytical issues and cycle threshold values in SARS-CoV-2 real-time RT-PCR testing: Should test results include these," Acs Omega, Vol. 6, No. 10, 6528-6536, 2021.
doi:10.1021/acsomega.1c00166 Google Scholar
10. Pal, S., W. Ying, E. C. Alocija, et al. "Sensitivity and specificity performance of a direct-charge transfer biosensor for detecting Bacillus cereus in selected food matrices," Biosystems Engineering, Vol. 99, No. 4, 461-468, 2008.
doi:10.1016/j.biosystemseng.2007.11.015 Google Scholar
11. Esteban-Fernandez De Avila, B., M. Pedrero, S. Campuzano, et al. "Sensitive and rapid amperometric magnetoimmunosensor for the determination of Staphylococcus aureus," Analytical and Bioanalytical Chemistry, Vol. 403, No. 4, 917-925, 2012.
doi:10.1007/s00216-012-5738-8 Google Scholar
12. Munoz-Berbel, X., N. Vigues, A. T. A. Jenkins, et al. "Impedimetric approach for quantifying low bacteria concentrations based on the changes produced in the electrode-solution interface during the pre-attachment stage," Biosensors & Bioelectronics, Vol. 23, No. 10, 1540-1546, 2008.
doi:10.1016/j.bios.2008.01.007 Google Scholar
13. Luo, J., Z. Lin, X. Xing, E. Forsberg, C. Wu, X. Zhu, T. Guo, G. Wang, B. Bian, D. Wu, and S. He, "Portable 4D snapshot hyperspectral imager for fastspectral and surface morphology measurements (Invited Paper)," Progress In Electromagnetics Research, Vol. 173, 25-36, 2022.
doi:10.2528/PIER22021702 Google Scholar
14. Guo, T., Z. Lin, X. Xu, Z. Zhang, X. Chen, N. He, G. Wang, Y. Jin, J. Evans, and S. He, "Broad-tuning, dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging," Progress In Electromagnetics Research, Vol. 177, 43-51, 2023.
doi:10.2528/PIER23030703 Google Scholar
15. Pawlowski, M. E., J. G. Dwight, N. Thuc Uyen, et al. "High performance image mapping spectrometer (IMS) for snapshot hyperspectral imaging applications," Optics Express, Vol. 27, No. 2, 1597-1612, 2019.
doi:10.1364/OE.27.001597 Google Scholar
16. Wang, T., F. Shen, H. Deng, et al. "Smartphone imaging spectrometer for egg/meat freshness monitoring," Analytical Methods, Vol. 14, No. 5, 508-517, 2022.
doi:10.1039/D1AY01726H Google Scholar
17. Shen, F., H. Deng, L. Yu, et al. "Open-source mobile multispectral imaging system and its applications in biological sample sensing," Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, Vol. 280, 121504, 2022.
doi:10.1016/j.saa.2022.121504 Google Scholar
18. Li, Y., F. Shen, and L. Hu, "A stare-down video-rate high-throughput hyperspectral imaging system and its applications in biological sample sensing," IEEE Sensors Journal, 2023. Google Scholar
19. Xu, Z., Y. Jiang, J. Ji, et al. "Classification, identification, and growth stage estimation of microalgae based on transmission hyperspectral microscopic imaging and machine learning," Optics Express, Vol. 28, No. 21, 30686-30700, 2020.
doi:10.1364/OE.406036 Google Scholar
20. Lin, S., X. Bi, S. Zhu, et al. "Dual-type hyperspectral microscopic imaging for the identification and analysis of intestinal fungi," Biomedical Optics Express, Vol. 9, No. 9, 4496-4508, 2018.
doi:10.1364/BOE.9.004496 Google Scholar
21. Luo, J., H. Zhang, E. Forsberg, et al. "Confocal hyperspectral microscopic imager for the detection and classification of individual microalgae," Optics Express, Vol. 29, No. 23, 37281-37301, 2021.
doi:10.1364/OE.438253 Google Scholar
22. Maktabi, M., Y. Wichmann, H. Koehler, et al. "Tumor cell identification and classification in esophageal adenocarcinoma specimens by hyperspectral imaging," Scientific Reports, Vol. 12, No. 1, 4508, 2022.
doi:10.1038/s41598-022-07524-6 Google Scholar
23. Zhu, S., K. Su, Y. Liu, et al. "Identification of cancerous gastric cells based on common features extracted from hyperspectral microscopic images," Biomedical Optics Express, Vol. 6, No. 4, 1135-1145, 2015.
doi:10.1364/BOE.6.001135 Google Scholar
24. Duan, Y., J. Wang, M. Hu, et al. "Leukocyte classification based on spatial and spectral features of microscopic hyperspectral images," Optics & Laser Technology, Vol. 112, 530-538, 2019.
doi:10.1016/j.optlastec.2018.11.057 Google Scholar
25. Wang, Q., J. Wang, M. Zhou, et al. "Spectral-spatial feature-based neural network method for acute lymphoblastic leukemia cell identification via microscopic hyperspectral imaging technology," Biomedical Optics Express, Vol. 8, 3017-3028, 2017.
doi:10.1364/BOE.8.003017 Google Scholar
26. Seo, Y., B. Park, A. Hinton, Jr., et al. "Identification of Staphylococcus species with hyperspectral microscope imaging and classification algorithms," Journal of Food Measurement and Characterization, Vol. 10, No. 2, 253-263, 2016.
doi:10.1007/s11694-015-9301-0 Google Scholar
27. Seo, Y., B. Park, S. C. Yoon, et al. "Morphological image analysis for foodborne bacteria classification," Transactions of the Asabe, Vol. 61, No. 1, 5-13, 2018.
doi:10.13031/trans.11800 Google Scholar
28. Liu, K., Z. Ke, P. Chen, et al. "Classification of two species of Gram-positive bacteria through hyperspectral microscopy coupled with machine learning," Biomedical Optics Express, Vol. 12, No. 12, 7906-7916, 2021.
doi:10.1364/BOE.445041 Google Scholar
29. Tao, C., J. Du, Y. Tang, J. Wang, et al. "A deep-learning based system for rapid genus identification of pathogens under hyperspectral microscopic images," Cells, Vol. 11, No. 14, 2237, 2022.
doi:10.3390/cells11142237 Google Scholar
30. Tao, C., J. Du, J. Wang, et al. "Rapid identification of infectious pathogens at the single-cell level via combining hyperspectral microscopic images and deep learning," Cells, Vol. 12, No. 3, 379, 2023.
doi:10.3390/cells12030379 Google Scholar
31. Kang, R., B. Park, M. Eady, et al. "Classification of foodborne bacteria using hyperspectral microscope imaging technology coupled with convolutional neural networks," Applied Microbiology and Biotechnology, Vol. 104, No. 7, 3157-3166, 2020.
doi:10.1007/s00253-020-10387-4 Google Scholar
32. Kang, R., B. Park, M. Eady, et al. "Single-cell classification of foodborne pathogens using hyperspectral microscope imaging coupled with deep learning frameworks," Sensors and Actuators B --- Chemical, Vol. 309, 127789, 2020.
doi:10.1016/j.snb.2020.127789 Google Scholar
33. Huang, G., Z. Liu, L. Van Der Maaten, et al. "Densely connected convolutional networks," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4700-4708, Honolulu, HI, USA, July 21-26, 2017. Google Scholar
34. Farooq, S., M. Del-Valle, M. O. dos Santos, et al. "Rapid identification of breast cancer subtypes using micro-FTIR and machine learning methods," Applied Optics, Vol. 62, No. 8, C80-C87, 2023.
doi:10.1364/AO.477409 Google Scholar
35. Farooq, S., A. Caramel-Juvino, and M. Del-Valle, "Superior machine learning method for breast cancer cell lines identification," 2022 SBFoton International Optics and Photonics Conference (SBFoton IOPC), 1-3, 2022. Google Scholar
36. Cho, J. H., P. J. Gemperline, and D. Walker, "Wavelength calibration method for a CCD detector and multichannel fiber-optic probes," Appl. Spectrosc., Vol. 49, No. 12, 1841-1845, 1995.
doi:10.1366/0003702953966055 Google Scholar
37. Wold, S., K. Esbensen, and P. Geladi, "Principal component analysis," Chemom. Intell. Lab. Syst., Vol. 2, No. 1-3, 37-52, 1987.
doi:10.1016/0169-7439(87)80084-9 Google Scholar
38. Bro, R. and A. K. Smilde, "Principal component analysis," Analytical Methods, Vol. 6, No. 9, 2812-2831, 2014.
doi:10.1039/C3AY41907J Google Scholar
39. Melgani, F. and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1778-1790, 2004.
doi:10.1109/TGRS.2004.831865 Google Scholar
40. Moughal, T. A., "Hyperspectral image classification using support vector machine," Journal of Physics Conference, Vol. 439, 012042, 2013.
doi:10.1088/1742-6596/439/1/012042 Google Scholar
41. Yang, W. and H. Song, "Spectral-spatial classification of hyperspectral image based on support vector machine," International Journal of Information Technology and Web Engineering, Vol. 16, No. 1, 56-74, 2021.
doi:10.4018/IJITWE.2021010103 Google Scholar
42. De Oliveira, M. A. S., M. Campbell, A. M. Afify, et al. "Hyperspectral Raman microscopy can accurately differentiate single cells of different human thyroid nodules," Biomedical Optics Express, Vol. 10, No. 9, 4411-4421, 2019.
doi:10.1364/BOE.10.004411 Google Scholar
43. Luo, J., H. Lin, A. Yang, et al. "Pulse fluorescence LIDAR system for identification and low concentration measurements of Phaeocystisglobosa cells and colonies," Optik, Vol. 270, 170003, 2022.
doi:10.1016/j.ijleo.2022.170003 Google Scholar