Vol. 63
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-08-21
Group Theory Based Design of Isotropic Negative Refractive Index Metamaterials
By
, Vol. 63, 295-310, 2006
Abstract
Novel isotropic planar and three-dimensional negative refractive index (NRI) metamaterial (MTM) designs consisting of periodically arranged cross structures are developed in the terahertz (THz) frequency regime using group theory. The novel designs not only avoid magnetoelectric coupling but also enable a simplified fabrication process. Using Finite-difference Time-Domain (FDTD) simulations, the design exhibits an NRI passband which is in good agreement with the S-parameters obtained from Fresnels equation. Cross-polarized fields are used to characterize the magnetoelectric coupling mechanism and determination of material properties of the medium via group theory aid in the characterization of the isotropy of the structure. Numerical simulations of a wedge composed of the proposed metamaterials prove the negative refractive index of the models.
Citation
Nantakan Wongkasem, Alkim Akyurtlu, and Kenneth Marx, "Group Theory Based Design of Isotropic Negative Refractive Index Metamaterials," , Vol. 63, 295-310, 2006.
doi:10.2528/PIER06062103
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Engheta, N., "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576

3. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B., Vol. 65, No. 4, 144440, 2002.
doi:10.1103/PhysRevB.65.144440

4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025

5. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1126/science.1105371

6. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, "Experimental observation of true left-handed transmission peaks in metamaterials," Optics Letters, Vol. 29, No. 22, 2623-2625, 2004.
doi:10.1364/OL.29.002623

7. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic threedimensional left-handed metamaterials," Phys. Rev. B., Vol. 71, No. 12, 121103, 2005.
doi:10.1103/PhysRevB.71.121103

8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

9. García-García, J., F. Martín, J. D. Baena, R. Marques, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys., Vol. 98, No. 3, 033103, 2005.
doi:10.1063/1.2006224

10. Gay-Balmaz, P., C. Maccio, and O. J. F. Martin, "Microwire arrays with plasmonic response at microwave frequencies," Appl. Phys. Lett., Vol. 81, No. 15, 2896-2898, 2002.
doi:10.1063/1.1513663

11. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439

12. Kafesaki, M., Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt., No. 7, 12, 2005.
doi:10.1088/1464-4258/7/2/002

13. Padilla, W. J., "Group theoretical description of artificial magnetic metamaterials utilized for negative index refraction," http://xxx.lanl.gov/abs/cond-mat/0508307., 0508.

14. Baena, J. D., L. Jelinek, R. Marques, and J. Zehentner, "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design," Appl. Phys. Lett., Vol. 88, 134108, 2006.
doi:10.1063/1.2190442

15. Marques, R., J. Martel, F. Mesa, and F. Medina, "A new 2D isotropic left-handed metamaterial design: theory and experiment," Microwave and Opt. Tech. Lett., Vol. 35, 2002.

16. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 2001.
doi:10.1126/science.1058847

17. Ferraro, J. R., Introductory Group Theory, Plenum Press, New York, USA, 1969.

18. Carter, R. L., Molecular Symmetry and Group Theory, John Wiley & Sons, New York, USA, 1998.

19. Hatfield, W. E. and W. E. Parker, Symmetry in Chemical Bonding and Structure, Charles E. Merrill, Ohio, USA, 1974.

20. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

21. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left-handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 35, 316-333, 2002.
doi:10.2528/PIER02052409

22. Katsarakis, N., T. Koshny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, "Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials," Phys. Rev. B., Vol. 70, 2004.
doi:10.1103/PhysRevB.70.201101

23. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404

24. Lindell, I. V., et al. Electromagnetic Waves in Chiral and Bi- Isotropic Media, Artech House, Boston, 1994.

25. Sihvola, A., Electromagnetic Mixing Formulas and Applications, T. J. Internation, Padstow, Cornwall, 1999.

26. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas and Propagat., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

27. Bridgeman, A., http://www.hull.ac.uk/php/chsajb/symmetry/.

28. Kettle, S. F. A., Symmetry and Structure, John Wiley & Sons, West Sussex, England, 1995.

29. Wongkasem, N.A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Computational and experimental analysis of thz double negative metamaterials,'' Special Session on Smart EM materials and applications," 2005 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, 3-8, 2005.

30. Jenkins, F. A. and H. E. White, Fundamentals of Optics, 4E, McGraw-Hill, 1976.