Vol. 79
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-18
Interference Suppression of Linear Antenna Arrays by Amplitude-Only Control Using a Bacterial Foraging Algorithm
By
Progress In Electromagnetics Research, Vol. 79, 475-497, 2008
Abstract
This paper presents a bacterial foraging algorithm (BFA) for null steering of linear antenna arrays by controlling only the element amplitudes. The BFA is a new evolutionary computing technique based on the foraging behavior of Escherichia (E.) coli bacteria in human intestine. To show the accuracy and flexibility of the proposed BFA, several examples of Chebyshev array pattern with the imposed single, multiple and broad nulls are given. It is found that the nulling method based on BFA is capable of steering the array nulls precisely to the undesired interference directions.
Citation
Kerim Guney, and Suad Basbug, "Interference Suppression of Linear Antenna Arrays by Amplitude-Only Control Using a Bacterial Foraging Algorithm," Progress In Electromagnetics Research, Vol. 79, 475-497, 2008.
doi:10.2528/PIER07110705
References

1. Steyskal, H., R. A. Shore, and R. L. Haupt, "Methods for null control and their effects on the radiation pattern," IEEE Trans. Antennas Propagat., Vol. 34, 404-409, 1986.
doi:10.1109/TAP.1986.1143816        Google Scholar

2. Er, M. H., "Linear antenna array pattern synthesis with prescribed broad nulls," IEEE Trans. Antennas Propagat., Vol. 38, 1496-1498, 1990.
doi:10.1109/8.57004        Google Scholar

3. Ibrahim, H. M., "Null steering by real-weight control — A method of decoupling the weights," IEEE Trans. Antennas Propagat., Vol. 39, 1648-1650, 1991.
doi:10.1109/8.102781        Google Scholar

4. Liao, W. P. and F. L. Chu, "Array pattern synthesis with null steering using genetic algorithms by controlling only the current amplitudes," Int. J. Electronics, Vol. 86, 445-457, 1999.
doi:10.1080/002072199133355        Google Scholar

5. Shore, R. A., "Nulling at symmetric pattern location with phaseonly weight control," IEEE Trans. Antennas Propagat., Vol. 32, 530-533, 1984.
doi:10.1109/TAP.1984.1143360        Google Scholar

6. Haupt, R. L., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 45, 1009-1015, 1997.
doi:10.1109/8.585749        Google Scholar

7. Ismail, T. H. and M. M. Dawoud, "Null steering in phased arrays by controlling the element positions," IEEE Trans. Antennas Propagat., Vol. 39, 1561-1566, 1991.
doi:10.1109/8.102769        Google Scholar

8. Tennant, A., M. M. Dawoud, and A. P. Anderson, "Array pattern nulling by element position perturbations using a genetic algorithm," Electronics Letters, Vol. 30, 174-176, 1994.
doi:10.1049/el:19940139        Google Scholar

9. Liao, W. P. and F. L. Chu, "Array pattern nulling by phase and position perturbations with the use of the genetic algorithm," Microwave and Optical Technology Letters, Vol. 15, 251-256, 1997.
doi:10.1002/(SICI)1098-2760(199707)15:4<251::AID-MOP16>3.0.CO;2-A        Google Scholar

10. Hejres, J. A., "Null steering in phased arrays by controlling the positions of selected elements," IEEE Trans. Antennas Propagat., Vol. 52, 2891-2895, 2004.
doi:10.1109/TAP.2004.835128        Google Scholar

11. Abu-Al-Nadi, D. I., T. H. Ismail, and M. J. Mismar, "Interference suppression by element position control of phased arrays using LM algorithm," Int. J. Electron. Commun., Vol. 60, 151-158, 2006.
doi:10.1016/j.aeue.2005.02.005        Google Scholar

12. Ares, F., J. A. Rodriguez, E. Villanueva, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Propagat., Vol. 47, 506-510, 1999.
doi:10.1109/8.768786        Google Scholar

13. Guney, K. and A. Akdagli, "Null steering of linear antenna arrays using modified tabu search algorithm," Progress In Electromagnetics Research, Vol. 33, 167-182, 2001.
doi:10.2528/PIER00121402        Google Scholar

14. Karaboga, N., K. Guney, and A. Akdagli, "Null steering of linear antenna arrays by using modified touring ant colony optimization algorithm," Int. J. RF and Microwave Computer Aided Eng., Vol. 12, 375-383, 2002.
doi:10.1002/mmce.10034        Google Scholar

15. Akdagli, A., K. Guney, and D. Karaboga, "Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 16, 1423-1441, 2002.
doi:10.1163/156939302X00066        Google Scholar

16. Karaboga, D., K. Guney, and A. Akdagli, "Antenna array pattern nulling by controlling both the amplitude and the phase using modified touring ant colony optimisation algorithm," Int. J. Electronics, Vol. 91, 241-251, 2004.
doi:10.1080/00207210410001690638        Google Scholar

17. Akdagli, A. and K. Guney, "Null steering of linear antenna arrays by phase perturbations using modified tabu search algorithm," J. Communications Technology and Electronics, Vol. 49, 37-42, 2004.        Google Scholar

18. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propagat., Vol. 53, 2674-2679, 2005.
doi:10.1109/TAP.2005.851762        Google Scholar

19. Yang, S. W., Y. B. Gan, and A. Y. Qing, "Antenna-array pattern nulling using a differential evolution algorithm," Int. J. RF and Microwave Computer Aided Eng., Vol. 14, 57-63, 2004.
doi:10.1002/mmce.10118        Google Scholar

20. Chung, Y. C. and R. L. Haupt, "Amplitude and phase adaptive nulling with a genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 14, 631-649, 2000.
doi:10.1163/156939300X01337        Google Scholar

21. Lu, Y. and B. K. Yeo, "Adaptive wide null steering for digital beamforming array with the complex coded genetic algorithm," IEEE Int. Conf. Phased Array Systems and Technology, 557-560, 2000.        Google Scholar

22. Mouhamadou, M., P. Vaudon, and M. Rammal, "Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control," Progress In Electromagnetics Research, Vol. 60, 95-106, 2006.
doi:10.2528/PIER05112801        Google Scholar

23. Babayigit, B., A. Akdagli, and K. Guney, "A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control," Journal of Electromagnetic Waves and Applications, Vol. 20, 1007-1020, 2006.
doi:10.1163/156939306776930222        Google Scholar

24. Mouhamadou, M., P. Armand, P. Vaudon, and M. Rammal, "Interference supression of the linear antenna arrays controlled by phase with use of SQP algorithm," Progress In Electromagnetics Research, Vol. 59, 251-265, 2006.
doi:10.2528/PIER05100603        Google Scholar

25. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204        Google Scholar

26. Guney, K. and M. Onay, "Bees algorithm for null synthesizing of linear antenna arrays by controlling only the element positions," Neural Network World, Vol. 16, 153-169, 2007.        Google Scholar

27. Yan, K. K. and Y. L. Lu, "Sidelobe reduction in arraypattern synthesis using genetic algorithm," IEEE Trans. Antennas Propagat., Vol. 45, 1117-1122, 1997.
doi:10.1109/8.596902        Google Scholar

28. Baskar, S., A. Alphones, and P. N. Suganthan, "Geneticalgorithm- based design of a reconfigurable antenna array with discrete phase shifters," Microwave and Optical Technology Letters, Vol. 45, 461-465, 2005.
doi:10.1002/mop.20853        Google Scholar

29. Mitilineos, S. A., S. C. A. Thomopoulos, and C. N. Capsalis, "Genetic design of dual-band, switched-beam dipole arrays, with elements failure correction, retaining constant excitation coefficients," J. Electromagnetic Waves and Applications, Vol. 20, 1925-1942, 2006.
doi:10.1163/156939306779322738        Google Scholar

30. Ayestaran, R. G., J. Laviada, and F. Las-Heras, "Synthesis of passive-dipole arrays with a genetic-neural hybrid method," J. Electromagnetic Waves and Applications, Vol. 20, 2123-2135, 2006.
doi:10.1163/156939306779322549        Google Scholar

31. Jin, J.H. L. Wang, W. M. Zhu, and Y. Z. Liu, "Array patterns synthesizing using genetic algorithm," Progress In Electromagnetics Research Symposium, No. 3, 64-68, 2006.

32. Mahanti, G. K., S. Das, and A. Chakraborty, "Design of phase-differentiated reconfigurable array antennas with minimum dynamic range ratio," IEEE Antennas and Wireless Propagat. Letters, Vol. 5, 262-264, 2006.
doi:10.1109/LAWP.2006.875899        Google Scholar

33. Tonn, D. A. and R. Bansal, "Reduction of sidelobe levels in interrupted phased array antennas by means of a genetic algorithm," Int. J. RF and Microwave Computer Aided Eng., Vol. 17, 134-141, 2007.
doi:10.1002/mmce.20207        Google Scholar

34. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using realcoded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304        Google Scholar

35. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase synthesis of dual-pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.
doi:10.2528/PIER06072301        Google Scholar

36. Mahanti, G. K., A. Chakrabarty, and S. Das, "Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio," Journal of Electromagnetic Waves and Applications, Vol. 21, 97-106, 2007.
doi:10.1163/156939307779391768        Google Scholar

37. Xu, Z., H. Li, Q. Z. Liu, and J. Y. Li, "Pattern synthesis of conformal antenna array by the hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 79, 75-90, 2008.
doi:10.2528/PIER07091901        Google Scholar

38. Akdagli, A., K. Guney, and D. Karaboga, "Touring ant colony optimization algorithm for shaped-beam pattern synthesis of linear antenna arrays," Electromagnetics, Vol. 26, 615-628, 2006.
doi:10.1080/02726340600978349        Google Scholar

39. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901        Google Scholar

40. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microwave and Optical Technology Letters, Vol. 38, 168-175, 2003.
doi:10.1002/mop.11005        Google Scholar

41. Boeringer, D. W. and D. H.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propagat., Vol. 52, 771-779, 2004.
doi:10.1109/TAP.2004.825102        Google Scholar

42. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, 2001-2012, 2006.
doi:10.1163/156939306779322747        Google Scholar

43. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, 1785-1795, 2006.
doi:10.1163/156939306779292273        Google Scholar

44. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904        Google Scholar

45. Jin, N. B. and Y. Rahmat-Samii, "Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multiobjective implementations," IEEE Trans. Antennas Propagat., Vol. 55, 556-567, 2007.
doi:10.1109/TAP.2007.891552        Google Scholar

46. Mikki, S. M. and A. A. Kishk, "Physical theory for particle swarm optimization," Progress In Electromagnetics Research, Vol. 75, 171-207, 2007.
doi:10.2528/PIER07051502        Google Scholar

47. Akdagli, A. and K. Guney, "Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm," Microwave and Optical Technology Letters, Vol. 36, 16-20, 2003.
doi:10.1002/mop.10657        Google Scholar

48. Yang, S. W., Y. B. Gan, and A. Y. Qing, "Sideband suppression in time-modulated linear arrays by the differential evolution algorithm," IEEE Antennas and Wireless Propagation Lett., Vol. 1, 173-175, 2002.
doi:10.1109/LAWP.2002.807789        Google Scholar

49. Kurup, D. G., M. Himdi, and A. Rydberg, "Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm," IEEE Trans. Antennas Propagat., Vol. 51, 2210-2217, 2003.
doi:10.1109/TAP.2003.816361        Google Scholar

50. Yang, S. W., Z. P. Nie, and Y. J. Wu, "A practical array pattern synthesis approach including mutual coupling effects," Electromagnetics, Vol. 27, 53-63, 2007.
doi:10.1080/02726340601036568        Google Scholar

51. Guney, K., A. Akdagli, and B. Babayigit, "Shaped-beam pattern synthesis of linear antenna arrays with the use of a clonal selection algorithm," Neural Network World, Vol. 16, 489-501, 2006.        Google Scholar

52. Akdagli, A., K. Guney, and B. Babayigit, "Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters," Journal of Electromagnetic Waves and Applications, Vol. 21, 215-227, 2007.
doi:10.1163/156939307779378808        Google Scholar

53. Passino, K. M., "Biomimicry of bacterial foraging," IEEE Control Systems Magazine, Vol. 22, 52-67, 2002.
doi:10.1109/MCS.2002.1004010        Google Scholar

54. Mishra, S., "Hybrid least-square adaptive bacterial foraging strategy for harmonic estimation," IEE Proc.-Generation Transmission and Distribution, Vol. 152, 379-389, 2005.

55. Mishra, S., "A hybrid least square-fuzzy bacterial foraging strategy for harmonic estimation," IEEE Trans. Evolutionary Computation, Vol. 9, 61-73, 2005.
doi:10.1109/TEVC.2004.840144        Google Scholar

56. Lin, W. and P. X. Liu, "Hammerstein model identification based on bacterial foraging," Electronics Letters, Vol. 42, 1332-1334, 2006.
doi:10.1049/el:20062743        Google Scholar

57. Kim, D. H. and J. H. Cho, "A biologically inspired intelligent PID controller tuning for AVR systems," Int. J. Control Automation and Systems, Vol. 4, 624-636, 2006.        Google Scholar

58. Niu, B., Y. Zhu, X. He, and X. Zeng, "Optimum design of PID controllers using only a germ of intelligence," 6th World Congress on Intelligent Control and Automation, No. 6, 3584-3588, 2006.        Google Scholar

59. Tang, W. J., M. S. Li, S. He, Q. H. Wu, and J. R. Saunders, "Optimal power flow with dynamic loads using bacterial foraging algorithm," 2006 Int. Conf. on Power System Technology, No. 10, 1-5, 2006.        Google Scholar

60. Majhi, B. and G. Panda, "Recovery of digital information using bacterial foraging optimization based nonlinear channel equalizers," First Int. Conf. on Digital Information Management, No. 12, 367-372, 2006.        Google Scholar

61. Ulagammai, M., P. Venkatesh, P. S. Kannan, and N. P. Padhy, "Application of bacterial foraging technique trained artificial and wavelet neural networks in load forecasting," Neurocomputing, Vol. 70, 2659-2667, 2007.
doi:10.1016/j.neucom.2006.05.020        Google Scholar

62. Kim, D. H., A. Abraham, and J. H. Cho, "A hybrid genetic algorithm and bacterial foraging approach for global optimization," Information Sciences, Vol. 177, 3918-3937, 2007.
doi:10.1016/j.ins.2007.04.002        Google Scholar

63. Mishra, S. and C. N. Bhende, "Bacterial foraging technique-based optimized active power filter for load compensation," IEEE Trans. Power Delivery, Vol. 22, 457-465, 2007.
doi:10.1109/TPWRD.2006.876651        Google Scholar