Vol. 83

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-05-23

CPW-Fed Multi-Band Omni-Directional Planar Microstrip Antenna Using Composite Metamaterial Resonators for Wireless Communications

By Li-Ming Si and Xin Lv
Progress In Electromagnetics Research, Vol. 83, 133-146, 2008
doi:10.2528/PIER08050404

Abstract

A novel approach for the design of a compact multiband planar microstrip antenna is presented. This type of antenna is composed of composite metamaterial resonators (including conditional microstrip resonators and metamaterial resonators), and fed by signal feed. A sample antenna with composite closed-ring resonator and split-ring resonator (SRR) fed by 50Ω coplanar waveguide (CPW) developed on FR4_epoxy substrate for multi-band wireless communication applications is presented. Appropriate design of the composite structure resulted in three discontinuous resonant bands. The fundamental magnetic resonant and electric resonant frequency of SRR and the first electric resonant frequency of the closed-ring resonator were combined to form low, middle, and high resonant band. The properties of this antenna are investigated by theoretical analysis and finite element method (FEM) simulations. The numerical results show that the proposed antenna has good impedance bandwidth and radiation characteristics in the three operating bands which cover the required band widths of the 2.4/5.2/5.8 GHz wireless local-area networks (WLAN) and 3.5/5.5 GHz worldwide interoperability for microwave access (WiMax) with return loss of better than 10 dB. The antenna also has stably omni-directional H-plane radiation patterns within the three operating bands.

Citation


Li-Ming Si and Xin Lv, "CPW-Fed Multi-Band Omni-Directional Planar Microstrip Antenna Using Composite Metamaterial Resonators for Wireless Communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404
http://www.jpier.org/PIER/pier.php?paper=08050404

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Smith, D.R., J. P. Willie, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. Chen, H., B. I. Wu, J. A. Kong, and , "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
    doi:10.1163/156939306779322585

    4. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
    doi:10.2528/PIER01082101

    5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    6. Srivatava, S. K., S. P. Ojha, and , "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
    doi:10.2528/PIER06061602

    7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 58010, 977-980, 2006.
    doi:10.1126/science.1133628

    8. Fu, Y. Q., Q. R. Zhang, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
    doi:10.1163/156939306776143415

    9. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
    doi:10.2528/PIER06021801

    10. Nader, E. and R. W. Ziolkowski, "A positive future for doub-lenegative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, 2005.
    doi:10.1109/TMTT.2005.845188

    11. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
    doi:10.1103/PhysRevLett.76.4773

    12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
    doi:10.1088/0953-8984/10/22/007

    13. Pendry, J. B., A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    14. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters, Vol. 93, 107402, 2004.
    doi:10.1103/PhysRevLett.93.107402

    15. Su, S. W., K. L. Wong, and F. S. Chang, "Compact printed ultra-wideband slot antenna with a band-notched operation," Microwave and Optical Technology Letters, Vol. 54, No. 2, 128-130, 2005.
    doi:10.1002/mop.20746

    16. Kim, Y. and D. H. Kwon, "CPW-fed planar ultra wideband antenna having a frequency band notch function," Electronics Letters, Vol. 40, No. 7, 403-405, 2004.
    doi:10.1049/el:20040302

    17. Liu, W. C. and C. F. Hsu, "CPW-fed notched monopole antenna for UMTS/IMT-200/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 841-851, 2007.
    doi:10.1163/156939307780749138

    18. Liu, W. C. and H. J. Liu, "Miniaturized asymmetrical CPW-fed meandered strip antenna for triple-band operation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1089-1097, 2007.

    19. Wu, B., B. Li, T. Su, and C. H. Liang, "Equivalent-circuit analysis and low pass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1943-1953, 2006.
    doi:10.1163/156939306779322765

    20. Li, D., Y. J. Xie, P. Wang, and R. Yang, "Applications of split-ring resonances on multi-band frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1551-1563, 2007.

    21. Xu, W., L. W. Li, H. Y. Yao, and T. S. Yeo, "Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 13-25, 2006.
    doi:10.1163/156939306775777413

    22. Chen, H., L. Ran, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
    doi:10.2528/PIER06112003

    23. Watkins, J., "Circular resonant structures in microstrip," Electronics Letters, Vol. 5, No. 21, 524, 1969.
    doi:10.1049/el:19690393

    24. Chang, K., Microwave Ring Circuits and Antennas, Wiley, New York, 1996.

    25. Lin, X. Q., Q. Cheng, R. P. Liu, D. Bao, and T. J. Cui, "Compact resonator filters and power dividers designed with simplified metastructures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1663-1672, 2007.

    26. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, and C. M. Soukoulis, "Experimental observation of true left-handed transmission peaks in metamaterials," Optics Letters, Vol. 29, No. 22, 2623-2635, 2004.
    doi:10.1364/OL.29.002623

    27. Yang, R., Y. Xie, P. Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1943-1953, 2006.
    doi:10.1163/156939306777442908

    28. Xu, W., L. W. Li, H. Y. Yao, and Q. Wu, "Left-handed material effects on waves modes and resonant frequencies: Filled waveguide structures and substrate-loaded patch antennas," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2033-2047, 2005.
    doi:10.1163/156939305775570459

    29. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
    doi:10.1163/156939306779322620

    30. Yang, R., Y. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrated," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.
    doi:10.1163/156939307783134425

    31. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
    doi:10.2528/PIER06113001

    32. HFSS, Ansoft Software Inc., USA.

    33. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., Wiley-IEEE Press, 2002.