1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Smith, D.R., J. P. Willie, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
3. Chen, H., B. I. Wu, J. A. Kong, and , "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
doi:10.1163/156939306779322585 Google Scholar
4. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101 Google Scholar
5. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
6. Srivatava, S. K., S. P. Ojha, and , "Enhancement of omnidirectional reflection bands in one-dimensional photonic crystals with left-handed materials," Progress In Electromagnetics Research, Vol. 68, 91-111, 2007.
doi:10.2528/PIER06061602 Google Scholar
7. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 58010, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
8. Fu, Y. Q., Q. R. Zhang, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
doi:10.1163/156939306776143415 Google Scholar
9. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801 Google Scholar
10. Nader, E. and R. W. Ziolkowski, "A positive future for doub-lenegative metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
11. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," Journal of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
13. Pendry, J. B., A. J. Holden, D. J. Robins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
14. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Physical Review Letters, Vol. 93, 107402, 2004.
doi:10.1103/PhysRevLett.93.107402 Google Scholar
15. Su, S. W., K. L. Wong, and F. S. Chang, "Compact printed ultra-wideband slot antenna with a band-notched operation," Microwave and Optical Technology Letters, Vol. 54, No. 2, 128-130, 2005.
doi:10.1002/mop.20746 Google Scholar
16. Kim, Y. and D. H. Kwon, "CPW-fed planar ultra wideband antenna having a frequency band notch function," Electronics Letters, Vol. 40, No. 7, 403-405, 2004.
doi:10.1049/el:20040302 Google Scholar
17. Liu, W. C. and C. F. Hsu, "CPW-fed notched monopole antenna for UMTS/IMT-200/WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 841-851, 2007.
doi:10.1163/156939307780749138 Google Scholar
18. Liu, W. C. and H. J. Liu, "Miniaturized asymmetrical CPW-fed meandered strip antenna for triple-band operation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1089-1097, 2007. Google Scholar
19. Wu, B., B. Li, T. Su, and C. H. Liang, "Equivalent-circuit analysis and low pass filter design of split-ring resonator DGS," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1943-1953, 2006.
doi:10.1163/156939306779322765 Google Scholar
20. Li, D., Y. J. Xie, P. Wang, and R. Yang, "Applications of split-ring resonances on multi-band frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1551-1563, 2007. Google Scholar
21. Xu, W., L. W. Li, H. Y. Yao, and T. S. Yeo, "Extraction of constitutive relation tensor parameters of SRR structures using transmission line theory," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 13-25, 2006.
doi:10.1163/156939306775777413 Google Scholar
22. Chen, H., L. Ran, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
doi:10.2528/PIER06112003 Google Scholar
23. Watkins, J., "Circular resonant structures in microstrip," Electronics Letters, Vol. 5, No. 21, 524, 1969.
doi:10.1049/el:19690393 Google Scholar
24. Chang, K., Microwave Ring Circuits and Antennas, Wiley, 1996.
25. Lin, X. Q., Q. Cheng, R. P. Liu, D. Bao, and T. J. Cui, "Compact resonator filters and power dividers designed with simplified metastructures," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1663-1672, 2007. Google Scholar
26. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, and C. M. Soukoulis, "Experimental observation of true left-handed transmission peaks in metamaterials," Optics Letters, Vol. 29, No. 22, 2623-2635, 2004.
doi:10.1364/OL.29.002623 Google Scholar
27. Yang, R., Y. Xie, P. Wang, and L. Li, "Microstrip antennas with left-handed materials substrates," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1943-1953, 2006.
doi:10.1163/156939306777442908 Google Scholar
28. Xu, W., L. W. Li, H. Y. Yao, and Q. Wu, "Left-handed material effects on waves modes and resonant frequencies: Filled waveguide structures and substrate-loaded patch antennas," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2033-2047, 2005.
doi:10.1163/156939305775570459 Google Scholar
29. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
30. Yang, R., Y. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrated," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.
doi:10.1163/156939307783134425 Google Scholar
31. Guo, Y. and R. Xu, "Planar metamaterials supporting multiple left-handed modes," Progress In Electromagnetics Research, Vol. 66, 239-251, 2006.
doi:10.2528/PIER06113001 Google Scholar
32. HFSS, , Ansoft Software Inc., USA.
33. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., Wiley-IEEE Press, 2002.