1. Karanasiou, I. S., "Development of a non invasive brain imaging system using microwave radiometry,", Doctor of Philosophy in Engineering, National Technical University of Athens, School of Electrical and Computer Engineering, Dec. 2003 (in Greek). Google Scholar
2. Jacobsen, S., P. R. Stauffer, and D. G. Neuman, "Dual-mode antenna design for microwave heating and noninvasive thermometry of superficial tissue disease," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 11, 1500-1509, Nov. 2000. Google Scholar
3. Lee, J.-W., K.-S. Kim, S.-M. Lee, S.-J. Eom, and R. V. Troitsky, "A novel design of thermal anomaly for mammary gland tumor phantom for microwave radiometer," IEEE Transactions on Biomedical Engineering, Vol. 49, No. 7, 694-699, Jul. 2002. Google Scholar
4. Wang, C. R., L. P. Yan, Y. D. Deng, and C. J. Liu, "A double-armed planar equiangular spiral patch probe for biomedical measurements," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1258-1266, 2008. Google Scholar
5. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research, Vol. 98, 389-405, 2009. Google Scholar
6. Drogoudis, D. G., G. A. Kyriacou, and J. N. Sahalos, "Microwave tomography employing an adjoint network based sensitivity matrix," Progress In Electromagnetics Research, Vol. 94, 213-242, 2009. Google Scholar
7. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009. Google Scholar
8. Iero, D., T. Isernia, A. F. Morabito, I. Catapano, and L. Crocco, "Optimal constraint field focusing for hyperthermia cancer therapy: A feasibility assessment on realistic phantoms," Progress In Electromagnetics Research, Vol. 102, 125-141, 2010. Google Scholar
9. Li, D., P. M. Meaney, and K. D. Paulsen, "Conformal microwave imaging for breast cancer detection," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, 1179-1186, 2003. Google Scholar
10. Paulides, M. M., J. F. Bakker, and G. C. van Rhoon, "A patch antenna design for a phased-array applicator for hyperthermia treatment of head and neck tumours," IEEE Transactions on Biomedical Engineering, Vol. 54, No. 11, 2057-2063, Nov. 2007. Google Scholar
11. Rosen, A., M. Stuchly, and A. Vander Vorst, "Applications of RF/microwave in medicine, invited paper," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, No. 3, 721-737, Mar. 2002. Google Scholar
12. Wang, Z., W. Che, and L. Zhou, "Uncertainty analysis of the rational function model used in the complex permittivity measurement of biological tissues using pmct probes within a wide microwave frequency band," Progress In Electromagnetics Research, Vol. 90, 137-150, 2009. Google Scholar
13. Gupta, K. C. and A. Benalla, Microstip Antenna Design, Artech House, 1988.
14. HMC648LP6 Datasheet by Hittite Microwave Corporation.
15. HFCN 3100 and LFCN 3400 datasheets, Mini-CircuitsTM.
16. Oikonomou, A., I. S. Karanasiou, and N. K. Uzunoglu, "Conformal phased array antennas for human brain imaging using near field radiometry," URSI 2007, Ottawa, Canada, Jul. 22-26, 2007. Google Scholar
17. Oikonomou, A. T., I. S. Karanasiou, and N. K. Uzunoglu, "Potential brain imaging using near field radiometry," Journal of Instrumentation, Vol. 4, 2009. Google Scholar
18. Yang, S. S., K.-F. Lee, A. A. Kishk, and K.-M. Luk, "Design and study of wideband single feed circularly polarized microstrip antennas," Progress In Electromagnetics Research, Vol. 80, 45-61, 2008. Google Scholar
19. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008. Google Scholar
20. Mahmoud, S. F. and A. R. Al-Ajmi, "A novel microstrip patch antenna with reduced surface wave excitation," Progress In Electromagnetics Research, Vol. 86, 71-86, 2008. Google Scholar
21. Ansari, J. A., P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, "H-shaped stacked patch antenna for dual band operation," Progress In Electromagnetics Research B, Vol. 5, 291-302, 2008. Google Scholar
22. Yu, Z.-W., G.-M. Wang, X.-J. Gao, and K. Lu, "A novel small-size single patch microstrip antenna based on koch and sierpinski fractal-shapes," Progress In Electromagnetics Research Letters, Vol. 17, 95-103, 2010. Google Scholar
23. Liu, X. F., Y. C. Jiao, and F. S. Zhang, "Conformal array antenna design using modified particle swarm optimization," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 207-218, 2008. Google Scholar
24. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996. Google Scholar
25. Karanasiou, I. S., N. K. Uzunoglu, and A. Garetsos, "Electromagnetic analysis of a non-invasive 3D passive microwave imaging system," Progress In Electromagnetic Research, Vol. 44, 287-308, 2004. Google Scholar