1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 6, 2001. Google Scholar
2. Ferguson, B. and X. C. Zhang, "Materials for terahertz science and technology," Nature Materials, Vol. 1, 26-33, Sep. 2002. Google Scholar
3. Liu, N., H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, Jan. 2008. Google Scholar
4. Temelkuran, B., M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, Jan. 2000. Google Scholar
5. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625, 2001. Google Scholar
6. Baccarelli, P., P. Burghignoli, F. Frezza, A. Galli, P. Lampariello, G. Lovat, and S. Paulotto, "Fundamental modal properties of surface waves on metamaterial grounded slabs," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1431-1442, 2005. Google Scholar
7. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, 2626-2640, Oct. 2003. Google Scholar
8. Tung, N. T., V. D. Lam, J. W. Park, M. H. Cho, J. Y. Rhee, W. H. Jang, and Y. P. Lee, "Single- and double-negative refractive indices of combined metamaterial structure," Journal of Applied Physics, Vol. 106, Sep. 2009. Google Scholar
9. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005. Google Scholar
10. Figotin, A. and I. Vitebskiy, "Electromagnetic unidirectionality in magnetic photonic crystals," Physical Review B, Vol. 67, 165210, 2003. Google Scholar
11. Perruisseau-Carrier, J. and A. K. Skrivervik, "Composite right/left-handed transmission line metamaterial phase shifters (mps) in mmic technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 1582-1589, 2006. Google Scholar
12. Ran, L., J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, and J. A. Kong, "Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss," Physical Review B (Condensed Matter and Materials Physics), Vol. 70, 073102-3, 2004. Google Scholar
13. Sungjoon, L., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 2678-2690, 2004. Google Scholar
14. Sungjoon, L., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 161-173, 2005. Google Scholar
15. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, 534-537, Apr. 22, 2005. Google Scholar
16. David, O. S. M., J. B. Richard, and R. W. Conrad, "Submicron imaging with a planar silver lens," Applied Physics Letters, Vol. 84, 4403-4405, 2004. Google Scholar
17. Jensen, J. S., O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpoth, and M. Kristensen, "Topology design and fabrication of an efficient double 90 photonic crystal waveguide bend," IEEE Photonics Technology Letters, Vol. 17, 1202-1204, 2005. Google Scholar
18. Kiziltas, G., D. Psychoudakis, J. L. Volakis, and N. Kikuchi, "Topology design optimization of dielectric substrates for bandwidth improvement of a patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 51, 2732-2743, 2003. Google Scholar
19. Wang, S. and J. Kang, "Topology optimization of nonlinear magnetostatics," IEEE Transactions on Magnetics, Vol. 38, 1029-1032, 2002. Google Scholar
20. Wongkasemand, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006. Google Scholar
21. Thomas, Z., T. Grzegorczyk, B.-I. Wu, X. Chen, and J. A. Kong, "Design and measurement of a four-port device using metamaterials," Optics Express, Vol. 13, 4737-4744, Jun. 2005. Google Scholar
22. Marqués, R., J. Martel, F. Mesa, and F. Medina, "A new 2d isotropic left-handed metamaterial design: Theory and experiment," Microwave and Optical Technology Letters, Vol. 35, 405-408, 2002. Google Scholar
23. Shin, J., A. Akyurtlu, and M. Deshpande, "Comments on design, fabrication, and testing of double negative metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 53, 891, 2005. Google Scholar
24. Sounas, D. L., N. V. Kantartzis, and T. D. Tsiboukis, "Focusing efficiency analysis and performance optimization of arbitrarily sized dng metamaterial slabs with losses," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 4111-4121, 2006. Google Scholar
25. Bendsøe, M. and O. Sigmund, Topology optimization: Theory, Methods, and Applications, Springer Verlag, 2003.
26. Sanchez-Palencia, E., Non Homogeneous Media and Vibration Theory, Springer-Verlag, 1980.
27. Shelukhin, V. V. and S. A. Terentev, "Frequency dispersion of dielectric permittivity and electric conductivity of rocks via two-scale homogenization of the Maxwell equations," Progress In Electromagnetics Research B, Vol. 14, 175-202, 2009. Google Scholar
28. Baena, J. D., L. Jelinek, R. Marques, and M. Silveirinha, "Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials," Physical Review A (Atomic, Molecular, and Optical Physics), Vol. 78, 013842, 2008. Google Scholar
29. Silveirinha, M. G., "Metamaterial homogenization approach with application to the characterization of microstructured composites with negative parameters," Physical Review B, Vol. 75, 115104, 2007. Google Scholar
30. Engstrom, C. and D. Sjoberg, "On two numerical methods for homogenization of Maxwell's equations," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1845-1856, 2007. Google Scholar
31. Smith, D. R. and J. B. Pendry, "Homogenization of metamaterials by field averaging (invited paper)," Journal of the Optical Society of America B-Optical Physics, Vol. 23, 391-403, Mar. 2006. Google Scholar
32. Ouchetto, O., C. W. Qiu, S. Zouhdi, L. W. Li, and A. Razek, "Homogenization of 3-d periodic bianisotropic metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3893-3898, 2006. Google Scholar
33. Silveirinha, M. G. and C. A. Fernandes, "Homogenization of 3-d-connected and nonconnected wire metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 1418-1430, 2005. Google Scholar
34. Ouchetto, O., S. Zouhdi, A. Bossavit, G. Griso, and B. Miara, "Homogenization of 3d structured composites of complex shaped inclusions," PIERS Proceedings, 22-26, Hangzhou, China, August 22--26, 2005.
35. Krokhin, A. A., P. Halevi, and J. Arriaga, "Long-wavelength limit (homogenization) for two-dimensional photonic crystals," Physical Review B, Vol. 65, 115208, 2002. Google Scholar
36. Caloz, C., A. Lai, and T. Itoh, "The challenge of homogenization in metamaterials," New Journal of Physics, Vol. 7, No. 15, Aug. 2005. Google Scholar
37. Sihvola, A., Electromagnetic Mixing Formulas & Applications, Institution of Electrical Engineers, 1999.
38. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physical Review B, Vol. 65, 195104, 2002. Google Scholar
39. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol. 70, 016608-7, 2004. Google Scholar
40. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Physical Review E, Vol. 71, 046610, 2005. Google Scholar
41. Datta, S., C. T. Chan, K. M. Ho, and C. M. Soukoulis, "Effective dielectric constant of periodic composite structures," Physical Review B, Vol. 48, 14936, 1993. Google Scholar
42. Lamb, W., D. M. Wood, and N. W. Ashcroft, "Long wavelength electromagnetic propagation in heterogeneous media," Physical Review B, Vol. 21, 2248-2266, 1980. Google Scholar
43. Silveirinha, M. G., C. A. Fernandes, and J. R. Costa, "Electromagnetic characterization of textured surfaces formed by metallic pins," IEEE Transactions on Antennas and Propagation, Vol. 56, 405-415, Feb. 2008. Google Scholar
44. Pokrovsky, A. L. and A. L. Efros, "Electrodynamics of metallic photonic crystals and the problem of left-handed materials," Physical Review Letters, Vol. 89, 093901, 2002. Google Scholar
45. Bensoussan, A., J. L. Lions, and G. Papanicolaou, Asymptotic Analysis of Periodic Structures, Amsterdam, North-Holland, 1978.
46. Nguetseng, G., "A general convergence result for a functional related to the theory of homogenization," SIAM Journal on Mathematical Analysis, Vol. 20, 608-623, 1989. Google Scholar
47. Wellander, N. and S. Barbara, "Homogenization of the Maxwell equations: Case ii. Nonlinear conductivity," Applications of Mathematics, Vol. 47, 255-283, 2002. Google Scholar
48. Banks, H. T., V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso, and B. Miara, "Homogenization of periodically varying coefficients in electromagnetic materials," Journal of Scientific Computing, Vol. 28, 191-221, 2006. Google Scholar
49. Kristensson, G., "Homogenization of corrugated interfaces in electromagnetics," Progress In Electromagnetics Research, Vol. 55, 1-31, 2005. Google Scholar
50. Hashin, Z. and S. Shtrikman, "A variational approach to the theory of the effective magnetic permeability of multiphase materials," Journal of Applied Physics, Vol. 33, 3125-3131, 1962. Google Scholar
51. Jackson, J. D., Classical Electrodynamics, 2 Ed., John Wiley & Sons, 1975.
52. Kristensson, G., "Homogenization of the Maxwell equations in an anisotropic material," Radio Science, Vol. 38, 8018, Apr. 2003. Google Scholar
53. Sjoberg, D., "Homogenization of dispersive material parameters for Maxwell's equations using a singular value decomposition," Multiscale Modeling and Simulation, Vol. 4, 760-789, 2006. Google Scholar
54. Wellander, N., "Homogenization of the Maxwell equations: Case i. Linear theory," Applications of Mathematics, Vol. 46, 29-51, 2001. Google Scholar
55. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008. Google Scholar
56. Ouchetto, O., S. Zouhdi, A. Bossavit, G. Griso, and B. Miara, "Modeling of 3-d periodic multiphase composites by homogenization," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 2615-2619, 2006. Google Scholar
57. Wellander, N. and G. Kristensson, "Homogenization of the Maxwell equations at fixed frequency," SIAM Journal on Applied Mathematics, Vol. 64, 170-195, 2003. Google Scholar
58. Bossavit, A., "Effective penetration depth in spatially periodic grids: A novel approach to homogenization," EMC'94, International Symposium on Electromagnetic Compatibility, 859-864, Dept. Elec. Engng., University La Sapienza, Roma, Italy, 1994. Google Scholar
59. Bossavit, A., "Superconductivity modelling: Homogenization of bean's model in three dimensions, and the problem of transverse conductivity," IEEE Transactions on Magnetics, Vol. 31, 1769-1774, 1995. Google Scholar
60. Cherkaev, E., "Inverse homogenization for evaluation of effective properties of a mixture," Institute of Physics Publishing Inverse Problems, Vol. 17, 1203-1218, Jun. 7, 2001. Google Scholar
61. Sigmund, O. and S. Torquato, "Design of materials with extreme thermal expansion using a three-phase topology optimization method," Journal of the Mechanics and Physics of Solids, Vol. 45, 1037-1067, 1997. Google Scholar
62. Sigmund, O., "A new class of extremal composites," Journal of the Mechanics and Physics of Solids, Vol. 48, 397-428, 2000. Google Scholar
63. Bloembaum, B., The use of structural optimization in automotive design-state of the art and vision, presented at the WCSMO-3, Buffalo, 1999.
64. Bendsoe, M. P. and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," Computer Methods in Applied Mechanics and Engineering, Vol. 71, 197-224, 1988. Google Scholar
65. Bendsøe, M., "Optimal shape design as a material distribution problem," Structural and Multidisciplinary Optimization, Vol. 1, 193-202, 1989. Google Scholar
66. Hassani, H. and E. Hinton, Homogenization and Structural Topology Optimization Theory, Practice and Software, Springer, 1998.
67. Rozvany, G., "Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics," Structural and Multidisciplinary Optimization, Vol. 21, 90-108, 2001. Google Scholar
66. Dyck, D. N. and D. A. Lowther, "Automated design of magnetic devices by optimizing material distribution," IEEE Transactions on Magnetics, Vol. 32, 1188-1193, May 1996. Google Scholar
69. Jensen, J. S. and O. Sigmund, "Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends," Applied Physics Letters, Vol. 84, 2022-2024, 2004. Google Scholar
70. Borel, P., A. Harpøth, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, "Topology optimization and fabrication of photonic crystal structures," Opt. Express, Vol. 12, 1996-2001, 2004. Google Scholar
71. Nomura, T., K. Sato, K. Taguchi, and T. Kashiwa, "Topology optimization method for antenna design using FDTD method," IEICE Transactions on Electronics, Vol. 12, 2196-2205, 2006. Google Scholar
72. Fuchi, K., A. R. Diaz, E. Rothwell, R. Ouedraogo, and A. Temme, "Topology optimization of periodic layouts of dielectric materials," Structural and Multidisciplinary Optimization, Vol. 42, 483-493, Jun. 2010. Google Scholar
73. Nomura, T., S. Nishiwaki, K. Sato, and K. Hirayama, "Topology optimization for the design of periodic microstructures composed of electromagnetic materials," Finite Elements in Analysis and Design, Vol. 45, 210-226, February 2009. Google Scholar
74. Sigmund, O., "Materials with prescribed constitutive parameters: An inverse homogenization problem," International Journal of Solids and Structures, Vol. 31, 2313-2329, 1994. Google Scholar
75. Sigmund, O., Systematic design of metamaterials by topology optimization, Vol. 13, 151-159 Iutam Symposium on Modelling Nanomaterials and Nanosystems, Netherlands, R. Pyrz and J. C. Rauhe (eds.), Springer, Netherlands, 2008.
76. Smith, D. R., D. C. Vier, N. Kroll, and S. Schultz, "Direct calculation of permeability and permittivity for a left-handed metamaterial," Applied Physics Letters, Vol. 77, 2246-2248, 2000. Google Scholar
77. Kiziltas, G. and Z. N. Wing, "Automated fabrication of three dimensional dielectric composites for RF applications," IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science, Albuquerque, USA, 2006.
78. Li, Z., Y. Erdemli, J. Volakis, and P. Papalambros, "Design optimization of conformal antennas by integrating stochastic algorithms with the hybrid finite-element method," IEEE Transactions on Antennas and Propagation, Vol. 50, 676-684, 2002. Google Scholar
79. Sigmund, O., "Design of multi-physics actuators using topology optimization- part i: One material structures," Computer Methods in Applied Mechanics and Engineering, Vol. 190, 6577-6604, 2001. Google Scholar
80. Kiziltas, G., N. Kikuchi, J. Volakis, and J. Halloran, "Topology optimization of dielectric substrates for filters and antennas using simp," Archives of Computational Methods in Engineering, Vol. 11, 355-388, 2004. Google Scholar
81. Olesen, L. H., F. Okkels, and H. Bruus, "A high-level programming-language implementation of topology optimization applied to steady-state Navier-Stokes flow," International Journal for Numerical Methods in Engineering, Vol. 65, 975-1001, 2006. Google Scholar
82. Wing, Z. and J. Halloran, "Dry powder deposition and compaction for functionally graded ceramics," Journal of the American Ceramic Society, Vol. 89, 3406-3412, 2006. Google Scholar