Vol. 134
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-11-26
A Wideband and Dual-Resonant Terahertz Metamaterial Using a Modified SRR Structure
By
Progress In Electromagnetics Research, Vol. 134, 289-299, 2013
Abstract
We present the design, fabrication and measurment of a dual-resonant broadband terahertz (THz) matamterial based on a modified split-ring resonator (MSRR) structure. The proposed MSRR is constructed by connecting the inner split ring with the outer split ring of adjacent cell. Transmission and reflection characteristics of the proposed structure are simulated using Ansoft HFSS, and the permittivities show negative values in 0.492-0.693 THz and 0.727-0.811 THz bands. The designed sample is fabricated on a gallium arsenide layer, and experiments are performed in Terahertz Time-Domain Spectroscopy. Measured transmission characteristics agree well with the simulations.
Citation
Wanyi Guo, Lianxing He, Biao Li, Teng Teng, and Xiao-Wei Sun, "A Wideband and Dual-Resonant Terahertz Metamaterial Using a Modified SRR Structure," Progress In Electromagnetics Research, Vol. 134, 289-299, 2013.
doi:10.2528/PIER12102315
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Chen, H.-T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid-state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3

3. Han, J., A. Lakhtakia, and C.-W. Qiu, "Terahertz metamaterial with semiconductor split-ring resonators for magnetostatic tenability," Opt. Express, Vol. 16, No. 19, 14390-14396, 2008.
doi:10.1364/OE.16.014390

4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
doi:10.1126/science.1094025

5. Chen, H.-T., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 7119, 597-600, Nov. 2006.
doi:10.1038/nature05343

6. Christian, D. and H. B. Peter, "Frequecncy selective surfaces for high sensitivity terahertz sensing," App. Phys. Lett., Vol. 91, No. 18, 184102(1)-184102(3), Aug. 2007.

7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
doi:10.1364/OE.16.007181

8. Wen, Q.-Y., H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," App. Phys. Lett., Vol. 95, No. 24, 16527-16534, 2009.
doi:10.1063/1.3276072

9. Lim, C. S., M. H. Hong, Z. C. Chen, N. R. Han, B. Luk'yanchuk, and T. C. Chong, "Hybrid metamaterial design and fabrication for terahertz resonance response enhancement," Opt. Express, Vol. 18, No. 12, 12421-12429, 2010.
doi:10.1364/OE.18.012421

10. Han, N. R., Z. C. Chen, C. S. Lim, B. Ng, and M. H. Hong, "Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates," Opt. Express, Vol. 19, No. 8, 6991-6998, 2011.
doi:10.1364/OE.19.006990

11. Yuan, Y., C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, "Dual-band planar electric metamaterial in the terahertz regime," Opt. Express, Vol. 16, No. 13, 9746-9752, 2008.
doi:10.1364/OE.16.009746

12. Yuan, Y., C. Bingham, T. Talmage, S. Palit, T. H. Hand, W. J. Padila, N. M. Jokerst, and S. A. Cummer, "A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators," App. Phys. Lett., Vol. 93, No. 19, 19110(1)-19110(3), 2008.

13. Ekmekci, E., K. Topalli, T. Akin, and G. Turhan-Sayan, "A tunable mult-band metamaterial design using micro-split SRR structures," Opt. Express, Vol. 17, No. 18, 16406-16058, 2009.
doi:10.1364/OE.17.016046

14. Han, J. G., J. Q. Gu, X. C. Lu, M. X. He, Q. R. Xing, and W. L. Zhang, "Broadband resonant terahertz transmission in a composite metal-dielectric structure," Opt. Express, Vol. 17, No. 19, 036617(1)-(11), 2005.

15. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617(1)-(11), 2005.

16. Chen, Z. C., N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, "Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates," Opt. Materials Express, Vol. 1, No. 2, 151-157, 2011.
doi:10.1364/OME.1.000151

17. Ng, B., S. M. Hanham, V. Giannini, Z. C. Chen, M. Tang, Y. E. Liew, N. Klein, M. H. Hong, and S. A. Maier, "Lattice resonances in antenna arrays for liquid sensing in the terahertz regime," Opt. Express, Vol. 19, No. 15, 14653-14661, 2011.
doi:10.1364/OE.19.014653

18. Liu, X.-X., D. A. Powell, and A. Alu, "Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures," Phys. Rev. B, Vol. 84, No. 23, 235106(1)-(7), 2011.