Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-02-20
A Cost-Effective Method for High-Quality 60 GHz Optical Millimeter Wave Signal Generation Based on Frequency Quadrupling
By
Progress In Electromagnetics Research, Vol. 137, 255-274, 2013
Abstract
In this paper, we presents a cost effective method to generate a high-quality quadruple frequency optical millimeter-wave (MMW) signal using an integrated dual-parallel MachZehnder modulator (IDP-MZM). Not only does the method minimize the complication of the central station (CS) and its frequency demand for the devices, but the generated optical MMW signal as well has good transmission performance. By properly adjusting the direct current (DC) bias, modulation index, and using two radio frequency (RF) driving signals with 135° phase delay, a high quality dual tone optical MMW at 60 GHz is generated from a 15 GHz RF local oscillator (LO) with optical sideband suppression ratio (OSSR) as high as 32 dB and radio frequency spurious suppression ratio (RFSSR) exceeding 33 dB without optical filter when an integrated IDP-MZM with 30 dB extinction ratio is utilized. Furthermore, the influences of a number of non-ideal parameters, such as the impact of imperfect extinction ratio, non-ideal RF driven voltage and phase difference of RF-driven signals applied to two sub-MZMs of the integrated DP-MZM, on OSSR are studied through Simulation. Finally, we build a Radio over fiber (RoF) system through simulation, and the transmission performance of the generated optical MMW signal is presented. The eye patterns still clear and keeps open even after 60 km transmission.
Citation
Nael Ahmed Al-Shareefi, Syed Idris Syed Hassan, Mohd Fareq Bin Abd Malek, Razali Ngah, Sura Adil Abbas, and Syed Alwee Aljunid, "A Cost-Effective Method for High-Quality 60 GHz Optical Millimeter Wave Signal Generation Based on Frequency Quadrupling," Progress In Electromagnetics Research, Vol. 137, 255-274, 2013.
doi:10.2528/PIER13011307
References

1. Anang, K. A., P. B. Rapajic, L. Bello, and R. Wu, "Sensitivity of cellular wireless network performance to system & propagation parameters at carrier frequencies greater than 2 GHz," Progress In Electromagnetics Research B, Vol. 40, 31-54, 2012.

2. Huang, T.-Y. and T.-J. Yen, "A high-ratio bandwidth square-wave-like bandpass filter by two-handed metamaterials and its application in 60GHZ wireless communication," Progress In Electromagnetics Research Letters, Vol. 21, 19-29, 2011.
doi:10.2528/PIERM11080109

3. Sarrazin, T., H. Vettikalladi, O. Lafond, M. Himdi, and N. Rolland, "Low cost 60 GHz new thin Pyralux membrane antennas fed by substrate integrated waveguide," Progress In Electromagnetics Research B, Vol. 42, 207-224, 2012.

4. Navarro-Cia, M., V. Torres Landivar, M. Beruete, and M. Sorolla Ayza, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetic Research,, Vol. 118, 287-301, 2011.
doi:10.2528/PIER11053105

5. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011.

6. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012.

7. Ogawa, H. and D. Polifko, "Fiber optic millimeter-wave subcarrier transmission links for personal radio communication systems," IEEE MTT-S International Microwave Symposium Digest, 555-558, 1992.

8. Lu, H.-H., C.-Y. Li, C.-H. Lee, Y.-C. Hsiao, and H.-W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and - 1 side modes injection-locked technique," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
doi:10.2528/PIERL09011604

9. Chun, T., Lin, J. Chen, W. Q. Xue, P. C. Peng, and S. Chi, "Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering," IEEE Photonics Technology Letters, Vol. 20, No. 12, 1027-1029, 2008.
doi:10.1109/LPT.2008.923739

10. Kotb, H. E., M. Y. Shalaby, and M. H. Ahmed, "Generation of nanosecond optical pulses with controlled repetition rate using incavity intensity modulated brillouin erbium fiber laser," Progress In Electromagnetics Research, Vol. 113, 313-331, 2011.

11. Calo, G., D. Alexandropoulos, and V. Petruzzelli, "Active WDM filter on dilute nitride quantum well photonic band gap waveguide," Progress In Electromagnetics Research Letters, Vol. 35, 37-49, 2012.

12. Jia, Z., et al. "Key enabling technologies for optical wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," Journal of Lightwave Technology, Vol. 25, 3452-3471, 2007.
doi:10.1109/JLT.2007.909201

13. Kumar, A., B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, "Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal," Progress In Electromagnetics Research Letters, Vol. 33, 27-35, 2012.

14. Kapilevich, B. and B. Litvak, "Noise versus coherency in MM-wave and microwave scattering from nonhomogeneous materials," Progress In Electromagnetics Research B, Vol. 28, 35-54, 2011.

15. Park, C., C. G. Lee, and C. S. Park, "Photonic frequency Up conversion by SBS-based frequency tripling," Journal of Lightwave Technology, Vol. 25, No. 7, 1711-1718, 2007.
doi:10.1109/JLT.2007.897749

16. Wang, Q., H. Rideout, F. Zeng, and J. Yao, "Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier," IEEE Photonics Technology Letters, Vol. 18, No. 23, 2460-2462, 2006.
doi:10.1109/LPT.2006.886826

17. Yu, J., Z. Jia, L. Yi, Y. Su, G. K. Chang, T. and Wang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photonics Technology Letters, Vol. 18, No. 1, 265-267, 2006.
doi:10.1109/LPT.2005.862006

18. Liu, J., L. Zhang, S.-H. Fan, C. Guo, S. He, and G.-K. Chang, "A novel architecture for peer-to-peer interconnect in millimeter-wave radio-over-fiber access networks," Progress In Electromagnetics Research, Vol. 126, 139-148, 2012.
doi:10.2528/PIER12012701

19. Shi, P., et al., "A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter," Optical Fiber Technology, Vol. 17, 236-241, 2011.
doi:10.1016/j.yofte.2011.02.007

20. Zhang, J., H. Chen, M. Chen, T. Wang, and S. Xie, "A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression," IEEE Photonics Technology Letters, Vol. 19, No. 14, 1057-1059, 2007.
doi:10.1109/LPT.2007.899462

21. Deng, L., D. Liu, X. Pang, X. Zhang, V. Arlunno, Y. Zhao, A. Caballero, A. K. Dogadaev, X. Yu, I. T. Monroy, M. Beltran, and R. Llorente, "42.13 Gbit/S 16QAM-OFDM photonics-wireless transmission in 75-110 GHz band," Progress In Electromagnetics Research, Vol. 126, 449-461, 2012.
doi:10.2528/PIER12013006

22. Qi, G., J. Yao, J. Seregelyi, S. Paquet, and C. Belisle, "Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator," Journal of Lightwave Technology, Vol. 23, No. 9, 2687-2695, 2005.
doi:10.1109/JLT.2005.854067

23. Shi, P., S. Yu, et al. "A novel frequency sextupling scheme for optical mm-wave generation utilizing an integrated dual-parallel Mach-Zehnder modulator," Optics Communications, Vol. 283, No. 19, 3667-3672, 2010.
doi:10.1016/j.optcom.2010.05.021

24. Al-Shareefi, N. A., S. H. Idris, M. F. B. A. Malek, R. Ngah, S. A. Aljunid, R. A. Fayadh, J. Adhab, and H. A. Rahim, "Development of a new approach for high-quality quadrupling frequency optical millimeter-wave signal generation without optical filter," Progress In Electromagnetics Research, Vol. 134, 189-208, 2012.

25. Chen, L., H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photonics Technology Letters, Vol. 18, No. 19, 2056-2058, 2006.
doi:10.1109/LPT.2006.883293

26. Zavargo-Peche, L., A. Ortega-Monux, J. G. Wanguemert-Perez, and I. Molina-Fernandez, "Fourier based combined techniques to design novel sub-wavelength optical integrated devices," Progress In Electromagnetics Research, Vol. 123, 447-465, 2012.
doi:10.2528/PIER11072907

27. He, J., L. Chen, Z. Dong, S. Wen, and J. Yu, "Full-duplex radio-over-fiber system with photonics frequency quadruples for optical millimeter-wave generation," Optical Fiber Technology, Vol. 15, No. 3, 290-295, 2009.
doi:10.1016/j.yofte.2008.12.006

28. Liu, X., et al., "Frequency quadrupling using an integrated Mach-Zehnder modulator with four arms," Optics Communications, Vol. 284, 4052-4058, 2011.
doi:10.1016/j.optcom.2011.04.008

29. Zhao, Y., et al., "Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators," Optics Letters, Vol. 34, 3250-3252, 2009.
doi:10.1364/OL.34.003250

30. Ma, J., et al., "Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation," Journal of Lightwave Technology, Vol. 25, 3244-3256, 2007.
doi:10.1109/JLT.2007.907794