Vol. 143
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-12-06
Comparative Modeling of Single-Ended through -Silicon Vias in GS and GSG Configurations Up to V-Band Frequencies
By
Progress In Electromagnetics Research, Vol. 143, 559-574, 2013
Abstract
This work presents a novel comparative modeling scheme for single-ended (SE) through-silicon vias (TSVs) in GSG and GS configurations. Physical scalable models based on the equations developed herein indicate that the use of two symmetric ground TSVs in GSG configuration relatively increases the parasitic capacitance and conductance in the silicon substrate. However, this increase in the parasitic capacitance requires that the parasitic inductance of SE TSV is reduced to maintain the same phase velocity in silicon. According to the modeling results, the GSG configuration has a larger insertion loss than that of the GS configuration because the former has a higher substrate conductance. Nevertheless, when measured using RF coaxial probes, the GSG configuration exhibits a larger measurement bandwidth than the GS configuration. Finally, with the assistance of a double-sided probing system, wideband S-parameter measurement can validate the established equivalent-circuit model of SE TSV in GSG configuration up to V-band frequencies.
Citation
Kuan-Chung Lu, and Tzyy-Sheng Horng, "Comparative Modeling of Single-Ended through -Silicon Vias in GS and GSG Configurations Up to V-Band Frequencies," Progress In Electromagnetics Research, Vol. 143, 559-574, 2013.
doi:10.2528/PIER13101706
References

1. Al-sarawi, S. F., D. Abbott, and P. D. Franzon, "A review of 3-D packaging technology," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging , Vol. 21, No. 1, 2-1, Feb. 1998.
doi:10.1109/96.659500

2. Kim, D. H., K. Athikulwongse, and S. K. Lim, "A study of through-silicon-via impact on the 3D stacked IC layout," Proc. IEEE Int. Conf. on Computer-Aided Design, 674-680, Nov. 2009.

3. Zhao, W.-S., X.-P. Wang, and W.-Y. Yin, "Electrothermal effects in high density through silicon via (TSV) arrays," Progress In Electromagnetics Research, Vol. 115, 223-242, 2011.

4. Liu, E.-X., E.-P. Li, W.-B. Ewe, H. M. Lee, T. G. Lim, and S. Gao, "Compact wideband equivalent-circuit model for electrical modeling of through-silicon via," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 6, 1454-1460, Jun. 2011.
doi:10.1109/TMTT.2011.2116039

5. Kim, J., J. S. Pak, J. Cho, E. Song, J. Cho, H. Kim, T. Song, J. Lee, H. Lee, K. Park, S. Yang, M.-S. Suh, K.-Y. Byun, and J. Kim, "High-frequency scalable electrical model and analysis of a through silicon via (TSV) ," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 1, No. 2, 181-195, Feb. 2011.
doi:10.1109/TCPMT.2010.2101910

6. Cheng, T.-Y., C.-D. Wang, Y.-P. Chiou, and T.-L, Wu, "A new model for through-silicon vias on 3-D IC using conformal mapping method," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 6, 303-305, Jun. 2012.
doi:10.1109/LMWC.2012.2195776

7. Khalaj-Amirhosseini, M., "Closed form solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

8. Lamy, Y. P. R., K. B. Jinesh, F. Roozeboom, D. J. Gravvesteijn, Lamy, Y. P. R., K. B. Jinesh, F. Roozeboom, and D. J. Gravvesteijn, "RF characterization and analytical modelling of through silicon vias and coplanar waveguides for 3D integration ," IEEE Trans. Adv. Packag., Vol. 33, No. 4, 1072-1079, Nov. 2010.
doi:10.1109/TADVP.2010.2046166

9. Lim, T. G., Y. M. Khoo, C. S. Selvanayagam, D. S. W. Ho, R. Li, X. Zhang, G. Shan, and X. Y. Zhong, "Through silicon via interposer for millimetre wave applications," Proc. 61st Electron. Proc. 61st Electron., 577-582, 2011.

10. Kim, H., J. Cho, M. Kim, K. Kim, J. Lee, H. Lee, K. Park, K. Choi, H.-C. Bae, J. Kim, and J. Kim, "Measurement and analysis of a high-speed TSV channel," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 10, 1672-1685, Oct. 2012.
doi:10.1109/TCPMT.2012.2207900

11. Jang, D. M., C. Ryu, K. Y. Lee, B. H. Cho, J. Kim, T. S. Oh, W. J. Lee, and J. Yu, "Development and evaluation of 3-D SiP with vertically interconnected through silicon vias (TSV)," Proc. 57th Electron. Comp. Tech. Conf., 847-852, 2007.

12. Fuchs, C., J. Charbonnier, S. Cheramy, L. Cadix, D. Henry, P. Chausse, O. Hajji, A. Farcy, G. Garnier, C. Brunet-Manquat, J. Diaz, and R. Anci, "Process and RF modelling of TSV last approach for 3D RF interposer," Proc. IEEE Int. Interconnect Tech. Conf. & Mat. for Adv. Metal., 1-3, 2011.

13. Fourneaud, L., T. Lacrevaz, J. Charbonnier, C. Fuchs, A. Farcy, C. Bermond, E. Eid, J. Roullard, and B. Flechet, "Extraction of equivalent high frequency models for TSV and RDL interconnects embedded in stacks of the 3D integration technology ," IEEE Workshop on Signal Propagation on Interconnects, 61-64, May 2011.

14. Lu, K.-C., T.-S. Horng, H.-H. Li, K.-C. Fan, T.-Y. Huang, and C.-H. Lin, "Scalable modeling and wideband measurement techniques for a signal TSV surrounded by multiple ground TSVs for RF/high-speed applications ," Proc. 62nd Electron. Comp. Tech. Conf., 1023-1026, 2012.

15. Lu, K.-C. and T.-S. Horng, "Comparative modeling study of single-ended through-silicon via between the G-S and G-S-G configuration ," IEEE Int. Microw. Symp. Dig., 2013.

16. Krupka, J., J. Breeze, A. Centeno, N. Alford, T. Clausen, and L. Jensen, "Measurements of permittivity, dielectric loss tangent, and resistivity of float-zone silicon at microwave frequencies," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 11, 3995-4001, Nov. 2006.
doi:10.1109/TMTT.2006.883655

17. Wartenberg, S. A., "Selected topics in RF coplanar probing," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1413-1421, Apr. 2003.
doi:10.1109/TMTT.2003.809184

18. Lu, K.-C., Y.-C. Lin, T.-S. Horng, S.-M. Wu, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, "Vertical interconnect measurement techniques based on double-sided probing system and short-open-load-reciprocal calibration," roc. 61th Electron. Comp. Tech. Conf., 2130-2133, 2011.

19. Fenero, A. and U. Pisani, "Two-port network analyzer calibration using an unknown `thru'," IEEE Microw. Guided Wave Lett., Vol. 2, No. 12, 505-507, Dec. 1992.
doi:10.1109/75.173410

20. Basu, L. Hayden and L. Hayden, "An SOLR calibration for accurate measurement of orthogonal on-wafer DUTs," IEEE Int. Microw. Symp. Dig., 1335-1338, 1997.

21. Wartenberg, S. A., "Selected topics in RF coplanar probing," IEEE Trans. Microw. Theory Tech., Vol. 591, No. 4, 1413-1421, Apr. 2003.
doi:10.1109/TMTT.2003.809184