Vol. 152
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-08-30
Adaptive Transmission Method for Alleviating the Radio Blackout Problem
By
Progress In Electromagnetics Research, Vol. 152, 127-136, 2015
Abstract
The radio blackout problem stands as one long obstacle for hypersonic flight and planetary atmosphere reentry. Rather than previous physical mitigation methods aiming to reduce the plasma electron density, this paper proposes a novel method which attempts to communicate at carrier frequency much higher than the plasma cutoff frequency. To overcome the highly dynamic channel characteristics, the reflected wave is used online to estimate the instantaneous channel states and enable adaptive transmission. According to the predicted channel states, the plasma sheath induced phase shift and amplitude attenuation are compensated by baseband modulation and power adaptation, respectively. Numerical simulations are presented and discussed, in order to illustrate the effectiveness of the proposed method.
Citation
Guolong He, Yafeng Zhan, and Ning Ge, "Adaptive Transmission Method for Alleviating the Radio Blackout Problem," Progress In Electromagnetics Research, Vol. 152, 127-136, 2015.
doi:10.2528/PIER15072702
References

1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, Sep. 1971.
doi:10.1109/TAES.1971.310328

2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, 19-31, 1970.

3. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002.

4. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

5. Bai, B., X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie, "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Transactions on Plasma Science, Vol. 42, No. 10, 3365-3372, Oct. 2014.
doi:10.1109/TPS.2014.2349009

6. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles," Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007.

7. Belov, I. F., V. Ya. Borovoy, V. A. Gorelov, A. Y. Kireev, A. S. Korolev, and E. A. Stepanov, "Investigation of remote antenna assembly for radio communication with reentry vehicle," Journal of Spacecraft and Rockets, Vol. 38, No. 2, 249-256, Mar. 2001.
doi:10.2514/2.3678

8. Hinson, W. F., P. B. Gooderum, and D. M. Bushell, "Experimental investigation of multiple-jet liquid injection into hypersonic flow,", TN D-5861, NASA, Jun. 1970.

9. Sternberg, N. and A. I. Smolyakov, "Resonant transmission of electromagnetic waves in multilayer dense-plasma structures," IEEE Transactions on Plasma Science, Vol. 37, No. 7, 1251-1260, Jul. 2009.
doi:10.1109/TPS.2009.2020399

10. Takahashi, Y., K. Yamada, and T. Abe, "Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry," Journal of Spacecraft and Rockets, Vol. 51, No. 2, 1954-1964, Mar. 2014.
doi:10.2514/1.A32880

11. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, No. 6, 1223-1229, Nov. 2008.
doi:10.2514/1.37395

12. Shashurin, A., T. Zhuang, G. Teel, M. Keidar, M. Kundrapu, J. Loverich, I. I. Beilis, and Y. Raitses, "Laboratory modeling of the plasma layer at hypersonic flight," Journal of Spacecraft and Rockets, Vol. 51, No. 3, 838-845, May 2014.
doi:10.2514/1.A32771

13. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, 1-10, 2015.

14. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA,Washington DC, NASA/TM-2010-216220, 2010.

15. Vilnrotter, V. A., S. Hinedi, and R. Kumar, "Frequency estimation techniques for high dynamic trajectories," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 4, 559-577, Jul. 1989.
doi:10.1109/7.32088

16. Hurd, W. J., P. Estabrook, C. S. Racho, and E. Satorius, "Critical spacecraft-to-earth communications for Mars exploration rover (MER) entry, descent and landing," Proc. IEEE Aerospace Conference, Vol. 3, 1283-1292, MT, Mar. 2002.

17. Satorius, E., P. Estabrook, J. Wilson, and D. Fort, "Direct-to-Earth communications and signal processing for Mars exploration rover entry, descent and landing," The Interplanetary Network Progress Report, IPN Progress Report 42-153, May 2003.

18. Soriano, M., S. Finley, D. Fort, B. Schratz, P. Ilott, R. Mukai, P. Estabrook, K. Oudrhiri, D. Kahan, and E. Satorius, "Direct-to-Earth communications with Mars science laboratory during entry, descent, and landing," Proc. 2013 IEEE Aerospace Conference, 1-14, 2013.

19. Cattivelli, F. S., P. Estabrook, E. H. Satorius, and A. H. Sayed, "Carrier recovery enhancement for maximum-likelihood doppler shift estimation in Mars exploration missions," IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 658-669, Oct. 2008.
doi:10.1109/JSTSP.2008.2005289

20. Lopes, C. G., E. H. Satorius, P. Estabrook, and A. H. Sayed, "Adaptive carrier tracking for Mars to earth communications during entry, descent, and landing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 1865-1879, Oct. 2010.
doi:10.1109/TAES.2010.5595600

21. Chung, S. T. and A. J. Goldsmith, "Degrees of freedom in adaptive modulation: A unified view," IEEE Transactions on Communications, Vol. 49, No. 9, 1561-1571, Sep. 2001.
doi:10.1109/26.950343

22. Goldsmith, A. J., Wireless Communications, Cambridge University Press, Cambridge, U.K., 2005.
doi:10.1017/CBO9780511841224

23. Svensson, A., "An overview of adaptive modulation schemes for known and predicted channels," Proceedings of the IEEE, Vol. 95, No. 12, 2322-2336, Dec. 2007.
doi:10.1109/JPROC.2007.904442

24. Yang, T. S., A. Duel-Hallen, and H. Hallen, "Reliable adaptive modulation aided by observations of another fading channel," IEEE Transactions on Communications, Vol. 52, No. 4, 605-611, Apr. 2004.
doi:10.1109/TCOMM.2004.826369

25. Duel-Hallen, A., S. Hu, and H. Hallen, "Long-range prediction of fading signals: Enabling adaptive transmission for mobile radio channels," IEEE Signal Processing Magazine, Vol. 17, No. 3, 62-75, May 2000.
doi:10.1109/79.841729

26. Duel-Hallen, A., "Fading channel prediction for mobile radio adaptive transmission systems," Proceedings of the IEEE, Vol. 95, No. 12, 2299-2313, Dec. 2007.
doi:10.1109/JPROC.2007.904443

27. Bachynski, M. P., T. W. Johnston, and I. Shkarofsky, "Electromagnetic properties of high temperature air," Proceedings of the IRE, Vol. 48, No. 3, 347-356, Mar. 1960.
doi:10.1109/JRPROC.1960.287607

28. He, G., Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao, "Channel characterization and finite-state Markov channel modeling for time-varying plasma sheath surrounding hypersonic vehicles," Progress In Electromagnetic Research, Vol. 145, 299-308, 2014.
doi:10.2528/PIER14031104

29. He, G., Y. Zhan, N. Ge, Y. Pei, and B. Wu, "Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal," IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3975-3981, Dec. 2014.
doi:10.1109/TPS.2014.2363840

30. Lin, T. C. and L. K. Sproul, "Influence of reentry turbulent plasma fluctuation on EM wave propagation," Computers and Fluids, Vol. 35, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009

31. Demetriades, A. and R. Grabow, "Mean and fluctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, Aug. 1971.
doi:10.2514/3.49956

32. Josyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, Nov. 2003.
doi:10.2514/2.7036

33. Kasdin, N. J., "Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation," Proceedings of the IEEE, Vol. 83, No. 5, 802-827, May 1995.
doi:10.1109/5.381848

34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online Book, 1999.