1. Borcea, L., "Electrical impedance tomography," Inverse Problems, Vol. 18, R99-R136, 2002.
doi:10.1088/0266-5611/18/6/201 Google Scholar
2. Sikora, J., Boundary Element Method for Impedance and Optical Tomography, Oficyna Wydawnicza Politechniki Warszawskiej, 2007.
3. Sikora, J., S. Wojtowicz, and eds., Industrial and Biological Tomography: Theoretical Basis and Applications, Wydawnictwo Ksiazkowe Instytutu Elektrotechniki, 2010.
4. Wei, H. Y. and M. Soleimani, "Electromagnetic tomography for medical and industrial applications: Challenges and opportunities," Proc. IEEE, Vol. 101, 559-564, 2013.
doi:10.1109/JPROC.2012.2237072 Google Scholar
5. Stawicki, K. and S. Gratkowski, "Optimization of signal coils in the magnetic induction tomography system," Przeglad Elektrotechniczny, Vol. 86, No. 5, 74-77, 2010. Google Scholar
6. Zakaria, Z., et al., "Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography," Sensors, Vol. 12, 7126-7156, 2012.
doi:10.3390/s120607126 Google Scholar
7. Al-Zeibak, S. and H. N. Saunders, "A feasibility study of in vivo electromagnetic imaging," Physics in Medicine and Biology, Vol. 38, No. 1, 151-160, 1993.
doi:10.1088/0031-9155/38/1/011 Google Scholar
8. Zhdanov, M. S. and K. Yoshioka, "Cross-well electromagnetic imaging in three dimensions," Exploration Geophysics, Vol. 34, 34-40, 2003.
doi:10.1071/EG03034 Google Scholar
9. Ma, L., H.-Y. Wei, and M. Soleimani, "Planar magnetic induction tomography for 3D near subsurface imaging," Progress In Electromagnetic Research, Vol. 138, 65-82, 2013.
doi:10.2528/PIER12110711 Google Scholar
10. Scharfetter, H., K. Hollaus, J. Rosell-Ferrer, and R. Merwa, "Single-step 3D image reconstruction in magnetic induction tomography: Theoretical limits of spatial resolution and contrast to noise ratio," Annals of Biomedical Engineering, Vol. 34, No. 11, 1786-1798, 2006.
doi:10.1007/s10439-006-9177-6 Google Scholar
11. Dekdouk, B., C. Ktistis, D. W. Armitage, and A. J. Peyton, "Absolute imaging of low conductivity material distributions using nonlinear reconstruction methods in magnetic induction tomography," Progress In Electromagnetic Research, Vol. 155, 1-18, 2016.
doi:10.2528/PIER15071705 Google Scholar
12. Feldkamp, J. R., "Single-coil magnetic induction tomographic three-dimensional imaging," J. Medical Imaging, Vol. 2, No. 1, 013502, 2015.
doi:10.1117/1.JMI.2.1.013502 Google Scholar
13. Feldkamp, J. R. and S. Quirk, "Validation of a convolution integral for conductivity imaging," Progress In Electromagnetic Research Letters, Vol. 67, 1-6, 2017.
doi:10.2528/PIERL17011401 Google Scholar
14. Feldkamp, J. R. and S. Quirk, "Coil geometry effects on single-coil magnetic induction tomography," Physics in Medicine and Biology, Vol. 62, 7097-7113, May 2017.
doi:10.1088/1361-6560/aa807b Google Scholar
15. Joines, M. T., Y. Zhang, C. Li, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Medical Physics, Vol. 21, No. 4, 547-550, 1994.
doi:10.1118/1.597312 Google Scholar
16. Sudduth, K. A., N. R. Kitchen, W. J. Wiebold, W. D. Batchelor, G. A. Bolero, D. E. Clay, H. L. Palm, F. J. Pierce, R. T. Schuler, and K. D. Thelen, "Relating apparent electrical conductivity to soil properties across the north-central U.S.A.," Computers and Electronics in Agriculture, Vol. 46, 263-283, 2005.
doi:10.1016/j.compag.2004.11.010 Google Scholar
17. Palacky, G. J., "Resistivity characteristics of geologic targets (Ch. 3)," Electromagnetic Methods in Applied Geophysics, Vol. 1, 53-129, 1988. Google Scholar
18. Feldkamp, J. R., "Inversion of an inductive loss convolution integral for conductivity imaging," Progress In Electromagnetic Research B, Vol. 74, 93-107, 2017.
doi:10.2528/PIERB17021413 Google Scholar
19. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," Intl. J. of Antennas and Propagation, Vol. 2015, Article ID 187806, 8 pages, http://dx.doi.org/10.1155/2015/187806, 2015. Google Scholar
20. Gradshteyn, I. S. and Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Ed., A. Jeffrey, Academic Press, 1980.
21. Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering, Wiley-Interscience, J. Wiley & Sons, 1982.
22. Elden, L., "Algorithms for the regularization of ill-conditioned least squares problems," BIT, Vol. 17, 134-145, 1977.
doi:10.1007/BF01932285 Google Scholar
23. Donatelli, M., A. Neuman, and L. Reichel, "Square regularization matrices for large linear discrete ill-posed problems," Numerical Linear Algebra with Applications, Vol. 19, 896-913, 2012.
doi:10.1002/nla.1833 Google Scholar
24. Katamreddy, S. H. and P. K. Yalavarthy, "Model-resolution based regularization improves near infrared diffuse optical tomography," J. Opt. Soc. Am., Vol. 29, No. 5, 649-656, 2012.
doi:10.1364/JOSAA.29.000649 Google Scholar
25. Feldkamp, J. R. and S. Quirk, "Effects of tissue heterogeneity on single-coil, scanning MIT imaging," Proc. SPIE 9783, Medical Imaging: Physics of Medical Imaging, 978359, 2016. Google Scholar
26. Feldkamp, J. R. and S. Quirk, "Optically tracked, single-coil, scanning magnetic induction tomography," J. Medical Imaging, Vol. 4, No. 2, 023504, 2017.
doi:10.1117/1.JMI.4.2.023504 Google Scholar
27. Feldkamp, J. R. and S. Quirk, "Optically tracked, single-coil, scanning magnetic induction tomography," Proc. SPIE 10132, Medical Imaging: Physics of Medical Imaging, 10132172, 2017. Google Scholar