1. Sadana, S., D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and U. Sinha, "Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity," Phys. Rev. A, Vol. 100, 013839, 2019.
doi:10.1103/PhysRevA.100.013839
2. Wikipedia, Newton’s rings, https://en.wikipedia.org/wiki/Newton's_rings.
3. Phase-locked loop, https://en.wikipedia.org/wiki/Phase-locked_loop.
4. Goodman, J. W., Statistical Optics, Wiley-Interscience, New York, 1985.
5. Loudon, R., "The Quantum Theory of Light," OUP Oxford, 2000.
6. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995.
doi:10.1017/CBO9781139644105
7. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, Cambridge, UK, 2004.
doi:10.1017/CBO9780511791239
8. Fox, M., Quantum Optics: An Introduction, Vol. 15, OUP Oxford, Oxford, UK, 2006.
9. Hanbury Brown, R. and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, Vol. 177, No. 4497, 27-29, 1956.
doi:10.1038/177027a0
10. Hong, C. K., Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett., Vol. 59, 2044-2046, Nov. 1987.
11. Fearn, H. and R. Loudon, "Quantum theory of the lossless beam splitter," Optics Communications, Vol. 64, 485-490, 1987.
doi:10.1016/0030-4018(87)90275-6
12. Kaltenbaek, R., B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, "Experimental interference of independent photons," Phys. Rev. Lett., Vol. 96, 240502, Jun. 2006.
doi:10.1103/PhysRevLett.96.240502
13. Prasad, S., M. O. Scully, and W. Martienssen, "A quantum description of the beam splitter," Optics Communications, Vol. 62, No. 3, 139-145, 1987.
doi:10.1016/0030-4018(87)90015-0
14. Ou, Z. Y., "Quantum theory of fourth-order interference," Phys. Rev. A, Vol. 37, 1607-1619, 1988.
doi:10.1103/PhysRevA.37.1607
15. Ham, B. S., "The origin of anticorrelation for photon bunching on a beam splitter," Scientific Reports, Vol. 10, 7309, 2020.
doi:10.1038/s41598-020-64441-2
16. Branczyk, A. M., "Hong-Ou-Mandel interference,", arXiv:1711.00080, 2017.
17. Di Martino, G., Y. Sonnefraud, M. S. Tame, S. Kena-Cohen, F. Dieleman, K. Ozdemir, M. S. Kim, and S. A. Maier, "Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect," Phys. Rev. Applied, Vol. 1, 034004, 2014.
doi:10.1103/PhysRevApplied.1.034004
18. Longo, P., J. H. Cole, and K. Busch, "The Hong-Ou-Mandel effect in the context of few-photon scattering," Opt. Express, Vol. 20, 12 326-12 340, 2012.
doi:10.1364/OE.20.012326
19. Lang, C., C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, "Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies," Nature Physics, Vol. 9, 345-348, 2013.
doi:10.1038/nphys2612
20. Lopes, R., A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, "Atomic Hong-Ou-Mandel experiment," Nature, Vol. 520, 66-68, 2015.
doi:10.1038/nature14331
21. Kobayashi, T., R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, "Frequency-domain Hong-Ou-Mandel interference," Nature Photonics, Vol. 10, 441-444, 2016.
doi:10.1038/nphoton.2016.74
22. Imany, P., O. D. Odele, M. S. Alshaykh, H.-H. Lu, D. E. Leaird, and A. M. Weiner, "Frequency-domain Hong-Ou-Mandel interference with linear optics," Opt. Lett., Vol. 43, No. 12, 2760-2763, 2018.
doi:10.1364/OL.43.002760
23. Rohde, P. P. and T. C. Ralph, "Frequency and temporal effects in linear optical quantum computing," Phys. Rev. A, Vol. 71, 032320, 2005.
doi:10.1103/PhysRevA.71.032320
24. Rohde, P. P., T. C. Ralph, and M. A. Nielsen, "Optimal photons for quantum-information processing," Phys. Rev. A, Vol. 72, 052332, 2005.
doi:10.1103/PhysRevA.72.052332
25. Mahrlein, S., S. Oppel, R. Wiegner, and J. von Zanthier, "Hong-Ou-Mandel interference without beam splitters," Journal of Modern Optics, Vol. 64, 921-929, 2017.
doi:10.1080/09500340.2016.1242790
26. Kim, M. S., W. Son, V. Buzek, and P. L. Knight, "Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement," Phys. Rev. A, Vol. 65, 032323, 2002.
doi:10.1103/PhysRevA.65.032323
27. Walschaers, M., "Signatures of many-particle interference," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 53, 043001, 2020.
doi:10.1088/1361-6455/ab5c30
28. Deng, Y.-H., H. Wang, X. Ding, Z.-C. Duan, J. Qin, M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.- H. Li, L.-C. Peng, E. S. Matekole, T. Byrnes, C. Schneider, M. Kamp, D.-W. Wang, J. P. Dowling, S. Hofling, C.-Y. Lu, M. O. Scully, and J.-W. Pan, "Quantum interference between light sources separated by 150 million kilometers," Phys. Rev. Lett., Vol. 123, 080401, 2019.
doi:10.1103/PhysRevLett.123.080401
29. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand, 1990.
30. Electromagnetic field theory, Lecture Notes for ECE 604 at Purdue U, 2020, https://engineering.purdue.edu/wcchew/ece604s20/EMFTAll.pdf.
31. Na, D.-Y., J. Zhu, F. L. Teixeira, and W. C. Chew, "Quantum information propagation preserving computational electromagnetics,", arXiv preprint arXiv:1911.00947, 2019.
32. Na, D.-Y., J. Zhu, W. C. Chew, and F. L. Teixeira, "Quantum information preserving computational electromagnetics," Phys. Rev. A, Vol. 102, No. 1, 013711, Jul. 2020.
doi:10.1103/PhysRevA.102.013711
33. Chew, W. C., A. Y. Liu, C. Salazar-Lazaro, and W. E. I. Sha, "Quantum electromagnetics: A new look — Part I and Part II," J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 73-97, 2016.
doi:10.1109/JMMCT.2016.2617018
34. Kirk, D. E., Optimal Control Theory: An Introduction, Courier Corporation, 2004.
35. Schrodinger, E., "An undulatory theory of the mechanics of atoms and molecules," Phys. Rev., Vol. 28, No. 6, 1049, 1926.
doi:10.1103/PhysRev.28.1049
36. Chew, W., A. Liu, C. Salazar-Lazaro, D.-Y. Na, and W. Sha, "Hamilton equations, commutator, and energy conservation," Quantum Reports, Vol. 1, 295-303, 2019.
doi:10.3390/quantum1020027
37. Louisell, W. H. and W. H. Louisell, Quantum Statistical Properties of Radiation, Vol. 7, Wiley, New York, 1973.
38. Haken, H., Quantum Field Theory of Solids, an Introduction, North-Holland, 1976.
39. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, Wiley-VCH, New York, NY, USA, 1988.
40. Vogel, W. and D.-G. Welsch, "Quantum Optics," John Wiley & Sons, 2006.
41. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.
42. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamics," Acta Physica Slovaca, Vol. 58, 675-809, 2008.
43. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, Oxford, UK, 2008.
doi:10.1093/acprof:oso/9780198508861.001.0001
44. Gottfried, K. and T.-M. Yan, Quantum Mechanics: Fundamentals, CRC Press, Boca Raton, FL, USA, 2018.
doi:10.4324/9780429493225
45. Milonni, P., An Introduction to Quantum Optics and Quantum Fluctuations, Oxford University Press, 2019.
doi:10.1093/oso/9780199215614.001.0001
46. Miller, D. A., Quantum Mechanics for Scientists and Engineers, Cambridge University Press, Cambridge, UK, 2008.
doi:10.1017/CBO9780511813962
47. Chew, W. C., "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC,", 2016, http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf.
48. Gerry, C. C. and K. M. Bruno, The Quantum Divide: Why Schrodinger's Cat is Either Dead or Alive, Oxford University Press, Oxford, UK, 2013.
doi:10.1093/acprof:oso/9780199666560.001.0001
49. Glauber, R. J., "The quantum theory of optical coherence," Phys. Rev., Vol. 130, 2529-2539, 1963.
doi:10.1103/PhysRev.130.2529