Vol. 172

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-01-13

An Ultra-Compact and Reproducible Fiber Tip Michelson Interferometer for High-Temperature Sensing (Invited)

By Xun Wu, Shengnan Wu, Xiaolu Chen, Huaguan Lin, Erik Forsberg, and Sailing He
Progress In Electromagnetics Research, Vol. 172, 89-99, 2021
doi:10.2528/PIER21102703

Abstract

An ultra-compact fiber tip Michelson interferometer (MI), primarily aimed for a reproducible and stable high-temperature sensing probe, is developed and demonstrated. Both single-mode fiber (SMF) and polarization maintaining fiber (PMF) are considered and compared. The tip MI is fabricated by only using a one-step partial-polishing technique, which forms a half oblique and half vertical end face and functions as a beam splitter. A wide spectra analysis proved that the interferometer has an optical path difference (OPD) that is consistent across samples. When the lead-in fiber suffers from bending or twisting, the interference spectrum for the PMF case is more stable than that for the SMF case. Experimental results show a linear average temperature sensitivity of 15.15 pm/˚C in the range of 100˚C to 1000˚C for three tested PMF samples, and the difference between the sensitivities of the samples is less than 4.0%. The ease of fabrication, highly compact structure, reproducibility, and excellent resistance to mechanical disturbance performance suggest that the proposed PMF tip MI is highly promising as a high temperature sensing probe with high spatial resolution.

Citation


Xun Wu, Shengnan Wu, Xiaolu Chen, Huaguan Lin, Erik Forsberg, and Sailing He, "An Ultra-Compact and Reproducible Fiber Tip Michelson Interferometer for High-Temperature Sensing (Invited)," Progress In Electromagnetics Research, Vol. 172, 89-99, 2021.
doi:10.2528/PIER21102703
http://www.jpier.org/PIER/pier.php?paper=21102703

References


    1. Lee, B. H., Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, "Interferometric fiber optic sensors," Sensors, Vol. 12, 2467-2486, 2012.
    doi:10.3390/s120302467

    2. Wu, S., G. Yan, B. Zhou, E. Lee, and S. He, "Open-cavity Fabry-Perot interferometer based on etched side-hole fiber for microfluidic sensing," IEEE Photonics Technology Letters, Vol. 27, 1813-1816, 2015.
    doi:10.1109/LPT.2015.2443375

    3. Abbas, L. G. and H. Li, "Temperature sensing by hybrid interferometer based on Vernier like effect," Optical Fiber Technology, Vol. 64, 102538, 2021.
    doi:10.1016/j.yofte.2021.102538

    4. Wang, T., M. Wang, and H. Ni, "Micro-Fabry-Pérot interferometer with high contrast based on an in-fiber ellipsoidal cavity," IEEE Photonics Technology Letters, Vol. 24, 948-950, 2012.
    doi:10.1109/LPT.2012.2185841

    5. Favero, F. C., G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, "Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing," Optics Letters, Vol. 36, 4191-4193, 2011.
    doi:10.1364/OL.36.004191

    6. Liu, X., M. Jiang, Q. Sui, and X. Geng, "Optical fibre Fabry-Perot relative humidity sensor based on HCPCF and chitosan film," Journal of Modern Optics, Vol. 63, 1668-1674, 2016.
    doi:10.1080/09500340.2016.1167974

    7. Su, H., Y. Zhang, K. Ma, Y. Zhao, and C. Yu, "Tip packaged high-temperature miniature sensor based on suspended core optical fiber," Journal of Lightwave Technology, Vol. 38, 4160-4165, 2020.
    doi:10.1109/JLT.2020.2975933

    8. Ferreira, M. S., L. Coelho, K. Schuster, J. Kobelke, J. L. Santos, and O. Frazão, "Fabry-Perot cavity based on a diaphragm-free hollow-core silica tube," Optics Letters, Vol. 36, 4029-4031, 2011.
    doi:10.1364/OL.36.004029

    9. Zhang, Z., J. He, B. Du, F. Zhang, K. Guo, and Y. Wang, "Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers," Optics Letters, Vol. 43, 6009-6012, 2018.
    doi:10.1364/OL.43.006009

    10. Choi, H. Y., K. S. Pack, S. J. Park, U. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Optics Letters, Vol. 33, 2455-2457, 2008.
    doi:10.1364/OL.33.002455

    11. Lee, D., M. Yang, C. Huang, and J. Dai, "Optical fiber high-temperature sensor based on dielectric films extrinsic Fabry-Pérot cavity," IEEE Photonics Technology Letters, Vol. 26, 2107-2110, 2014.
    doi:10.1109/LPT.2014.2346622

    12. Yu, X., et al., "Hybrid sapphire dual-Fabry-Perot-cavities sensor for high temperature and RI measurement," Journal of Lightwave Technology, Vol. 39, 3911-3918, 2021.
    doi:10.1109/JLT.2020.3040415

    13. Zhang, H., et al., "Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber," Scientific Reports, Vol. 7, 46633, 2017.
    doi:10.1038/srep46633

    14. Wei, T., Y. Han, H. Tsai, and H. Xiao, "Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser," Optics Letters, Vol. 33, 536-538, 2008.
    doi:10.1364/OL.33.000536

    15. Chen, P. and X. Shu, "Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing," Optics Express, Vol. 26, 5292-5299, 2018.
    doi:10.1364/OE.26.005292

    16. Gao, H., Y. Jiang, Y. Cui, L. Zhang, J. Jia, and L. Jiang, "Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range," Journal of Lightwave Technology, Vol. 36, 5881-5886, 2018.
    doi:10.1109/JLT.2018.2875941

    17. Liao, C. R., D. N. Wang, M. Wang, and M. Yang, "Fiber in-line Michelson interferometer tip sensor fabricated by femtosecond laser," IEEE Photonics Technology Letters, Vol. 24, 2060-2063, 2012.
    doi:10.1109/LPT.2012.2219517

    18. Bae, H., X. M. Zhang, H. Liu, and M. Yu, "Miniature surface-mountable Fabry-Perot pressure sensor constructed with a 45˚ angled fiber," Optics Letters, Vol. 35, 1701-1703, 2010.
    doi:10.1364/OL.35.001701

    19. Bae, H., L. Dunlap, J. Wong, and M. Yu, "Miniature temperature compensated fabry-perot pressure sensors created with self-aligned polymer photolithography process," IEEE Sensors Journal, Vol. 12, 1566-1573, 2012.

    20. Zhu, J., M. Wang, L. Chen, X. Ni, and H. Ni, "An optical fiber Fabry-Perot pressure sensor using corrugated diaphragm and angle polished fiber," Optical Fiber Technology, Vol. 34, 42-46, 2017.
    doi:10.1016/j.yofte.2016.12.004

    21. Pang, C., H. Bae, A. Gupta, K. Bryden, and M. Yu, "MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing," Optics Express, Vol. 21, 21829-21839, 2013.
    doi:10.1364/OE.21.021829

    22. Wang, W., N. Wu, Y. Tian, X. Wang, C. Niezrecki, and J. Chen, "Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber," Optics Express, Vol. 17, 16613-16618, 2009.
    doi:10.1364/OE.17.016613

    23. Liu, B., J. Lin, J. Wang, C. Ye, and P. Jin, "MEMS-based high-sensitivity Fabry-Perot acoustic sensor with a 45˚ angled fiber," IEEE Photonics Technology Letters, Vol. 28, 581-584, 2016.
    doi:10.1109/LPT.2015.2506480

    24. Zhang, X., et al., "Angled fiber-based Fabry-Perot interferometer," Optics Letters, Vol. 45, 292-295, 2020.
    doi:10.1364/OL.45.000292

    25. Yin, J., et al., "Assembly-free-based fiber-optic micro-michelson interferometer for high temperature sensing," IEEE Photonics Technology Letters, Vol. 28, 625-628, 2016.
    doi:10.1109/LPT.2015.2503276

    26. Wang, T., K. Liu, J. Jiang, M. Xue, P. Chang, and T. Liu, "A large range temperature sensor based on an angled fiber end," Optical Fiber Technology, Vol. 45, 19-23, 2018.
    doi:10.1016/j.yofte.2018.04.008

    27. Jiang, L., J. Yang, S. Wang, B. Li, and M. Wang, "Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity," Optics Letters, Vol. 36, 3753-3755, 2011.
    doi:10.1364/OL.36.003753

    28. Zhao, N., et al., "High temperature high sensitivity Mach-Zehnder interferometer based on waist-enlarged fiber bitapers," Sensors and Actuators A: Physical, Vol. 267, 491-495, 2017.
    doi:10.1016/j.sna.2017.09.016

    29. Li, Z., J. Tian, Y. Jiao, Y. Sun, and Y. Yao, "Simultaneous measurement of air pressure and temperature using fiber-optic cascaded Fabry-Perot interferometer," IEEE Photonics Journal, Vol. 11, 1-10, 2019.

    30. Tian, J., Y. Jiao, S. Ji, X. Dong, and Y. Yao, "Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation," Optics Communications, Vol. 412, 121-126, 2018.
    doi:10.1016/j.optcom.2017.12.005

    31. Wu, Y., Y. Zhang, J. Wu, and P. Yuan, "Fiber-optic hybrid-structured Fabry-Perot interferometer based on large lateral offset splicing for simultaneous measurement of strain and temperature," Journal of Lightwave Technology, Vol. 35, 4311-4315, 2017.
    doi:10.1109/JLT.2017.2734062

    32. Wang, R., et al., "Fabrication of high-temperature tilted fiber Bragg gratings using a femtosecond laser," Optics Express, Vol. 25, 23684-23689, 2017.
    doi:10.1364/OE.25.023684

    33. Lei, X. and X. Dong, "High-sensitivity Fabry-Perot interferometer high-temperature fiber sensor based on vernier effect," IEEE Sensors Journal, Vol. 20, 5292-5297, 2020.
    doi:10.1109/JSEN.2020.2970579