Vol. 29
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Application-Oriented Relativistic Electrodynamics (2)
By
, Vol. 29, 107-168, 2000
Abstract
This article is a revised and upgraded edition of a previous one published in this journal, hence the label (2), see the General Remarks section below. Relativistic Electrodynamics, for many years a purely academic subject from the point of view of the applied physicist and electromagnetic radiation engineer, is nowadays recognized as pertinent to many practical applications. We therefore need to define a syllabus and explore the best methods for educating future generations of such users. Such an attempt is presented here, and is of course biased by personal preferences. What emerges as general guidelines are the facts that Relativistic Electrodynamics should be presented axiomatically, without trying to "explain the physical meaning" of Special Relativity, that four-vectors and their mathematical properties should be emphasized, and that the field tensors, an elegant formalism, albeit of limited practical use, should be avoided. Use of four-fold Fourier transforms not only greatly simplifies the relevant manipulations, it is also of paramount importance for discussion of dispersive media. This approach yields many concepts as mathematical results, e.g., the Relativistic Doppler effect, which therefore do not require a long phenomenological discussion with many "explanations". Introducing this approach as early as possible opens new vistas for the student and the educator, indeed some of the new results here do not appear in textbooks on Special Relativity. One of the main results shown here is the fact that the generalized Fermat principle states that the ray will propagate in such a manner that the proper time will be minimized (or extremized, in general). It also strips the mystique of this principle, showing that it is in fact equivalent to a modest mathematical condition on the smoothness of the phase function. The presentation is constructed in a way that allows the student to gradually overcome difficulties in assimilating new concepts and applying them. In that too it is different from many conventional presentations.
Citation
Dan Censor, "Application-Oriented Relativistic Electrodynamics (2)," , Vol. 29, 107-168, 2000.
doi:10.2528/PIER99120201
References

1. Censor, D., "Application-oriented relativistic electrodynamics," Progress In Electromagnetics Research, Editor J. A. Kong, Vol. 4, 119–158, Elsevier, 1991.

2. Censor, D., "Electrodynamics, topsy-turvy Special Relativity, and generalized Minkowski constitutive relations for linear and nonlinear systems," Progress in Electromagnetics Research, Editor J. A. Kong, Vol. 18, 261–284, Elsevier, 1998.

3. Einstein, A., "Zur Elektrodynamik bewegter Korper," Ann. Phys. (Lpz.), 17, 891–921, 1905; English translation: “On the electrodynamics of moving bodies,” The Principle of Relativity, Dover.

4. Becker, R., Electromagnetic Fields and Interactions, Dover, 1982.

5. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

6. Fano, R. M., L. J. Chu, and R. B. Adler, Electromagnetic Fields, Energy, and Forces, Wiley, 1960.

7. Sommerfeld, A., Electrodynamics, Dover, 1964.

8. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, 1968.

9. Panofsky, W. K. H. and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, 1971.

10. The Electromagnetic Field, McGraw-Hill, 1975.

11. Jackson, J. D., Classical Electrodynamics, Wiley, 1975.

12. Portis, A. M., Electromagnetic Fields, Sources and Media, Wiley, 1978.

13. Lorrain, P. and D. R. Corson, Electromagnetism, Principles and Applications, W. H. Freeman, 1970.

14. Wangness, R. K., Electromagnetic Fields, Wiley, 1979.

15. Griffiths, D. J., Introduction to Electrodynamics, Prentice-Hall, 1981.
doi:10.1119/1.12574

16. Frankl, D. R., Electromagnetic Theory, Prentice-Hall, 1986.

17. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, 1985.

18. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.

19. Plonus, M. A., Applied Electromagnetics, McGraw-Hill, 1988.

20. Eringen, A. C. and G. A. Maugin, Electrodynamics of Continua, Vol. 2, Springer, 1990.
doi:10.1007/978-1-4612-3226-1

21. Schwartz, M., Principles of Electrodynamics, Dover, 1987.

22. Van Bladel, J., Relativity and Engineering, Springer, 1984.
doi:10.1007/978-3-642-69198-0

23. Lindell, I. V., Methods for Electromagnetic Field Analysis, Oxford, 1992.

24. Minkowski, H., "Die Grundgleichungen f¨ur die elektromagnetische Vorg¨ange in bewegten Korpern," Gottinger Nachrichten, 53-116, 1908.

25. Zangari, M. and D. Censor, "Spectral representations: An alternative to the spatiotemporal world view," Synthese, Vol. 112, 97-123, 1997.
doi:10.1023/A:1004964211391

26. Censor, D., "Simultaneity, causality, and spectral representations,", submitted for publication.

27. Abraham, M., "Zur theorie der strahlung und des strahlungdruckes," Ann. Phys. (Lpz.), Vol. 14, 236-287, 1904.
doi:10.1002/andp.19043190703

28. Pauli, W., Theory of Relativity, Pergamon, 1958, also Dover Publications.

29. Censor, D., "Dispersion equations in moving media," Proceedings IEEE, Vol. 68, 528-529, 1980.
doi:10.1109/PROC.1980.11677

30. Bohm, D., The Special Theory of Relativity, Benjamin, 1965.

31. Post, E. J., Formal Structure of Electromagnetics, North-Holand, 1962.

32. Hebenstreit, H., "Constitutive relations for moving plasmas," Z. Naturforsch. A, Vol. 34a, 147-154, 1979.

33. Hebenstreit, H., "Calculation of covariant dispersion equations for moving plasmas," Z. Naturforsch. A, Vol. 34a, 155-162, 1979.

34. Hebenstreit, H. and K. Suchy, "Polarization relations and dispersion equations for anisotropic moving media," Z. Naturforsch. A, Vol. 34a, 1147-1157, 1979.

35. Censor, D., "A quest for systematic constitutive formulations for general field and wave systems based on the Volterra differential operators," Progress In Electromagnetics Research, Editor J. A. Kong, Vol. 25, 261–284, Elsevier, 2000.

36. Chawla, B. R. and H. Unz, Electromagnetic Waves in Moving Magnetoplasmas, Univ. Press, Lawrence, Kansas, 1971.

37. Kelso, J. M., Radio Ray Propagation in the Ionosphere, McGraw- Hill, 1964.

38. Van Bladel, J., Electromagnetic Fields, Hemisphere, 1985.

39. Ghatak, A., Optics, McGraw-Hill, 1977.

40. Sommerfeld, A., Optics, Academic Press, 1964.

41. Censor, D., "Quasi doppler effects associated with spatiotemporal translatory, moving, and active boundaries," Journal of Electromagnetic Waves and Applications, Vol. 13, 145-174, 1999.
doi:10.1163/156939399X00790

42. Censor, D., "Application-oriented ray theory," International. J. Electrical. Eng. Education, Vol. 15, 215-223, 1978.
doi:10.1177/002072097801500305

43. Molcho, J. and D. Censor, "A simple derivation and an example of Hamiltonian ray propagation," Am. J. Phys, Vol. 54, 351-353, 1986.
doi:10.1119/1.14621

44. Poeverlein, H., "Sommerfeld-Runge law in three and four dimensions," The Physical Review, Vol. 128, 956-964, 1962.
doi:10.1103/PhysRev.128.956

45. Synge, J. L., Geometrical Mechanics and De Broglie Waves, Cambridge University Press, 1954.

46. Censor, D., "““Waves”, “objects” and special relativity," Journal of Electromagnetic Waves and Applications, Vol. 5, 1365-1391, 1991.
doi:10.1163/156939391X00897

47. Censor, D. and J. J. Gavan, "Wave packets, group velocities and rays in lossy media revisited," IEEE Trans. on Electromagnetic Compatibility, Vol. 31, 262-272, 1989.
doi:10.1109/15.30913

48. Sonnenschein, E., I. Rutkevich, and D. Censor, "Wave packets, rays and the role of real group velocity in absorbing media," Physical Review E, Vol. 57, 1005-1016, 1998.
doi:10.1103/PhysRevE.57.1005

49. Sonnenschein, E., I. Rutkevich, and D. Censor, "Wave packet and group velocity in absorbing media: Solutions of the telegrapher’s equation," Journal of Electromagnetic Waves and Applications, 2000.

50. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, 1973.

51. Censor, D. and K. Suchy, "Wave packets and ray tracing in lossy media," Proc. URSI Natl. Comm., Fed. Rep. of Germany, Kleinheubacher, 617–623, 1975.

52. Censor, D., "Fermat’s principle and real space-time rays in absorbing media," J. Phys. A: Math. Gen., Vol. 10, 1781-1790, 1977.
doi:10.1088/0305-4470/10/10/012

53. Censor, D., "Fermat’s principle, Hamiltonian ray equations, group velocity and wave packets in absorptive media," Advances in Thermodynamics, Vol. 3: Theory and Extremum Principles, Editors, S. Sieniuycz and P. Salamon, 448–481, Taylor and Francis, 1990.

54. Sonnenschein, E., D. Censor, I. Rutkevich, and J. A. Bennett, "Ray trajectories in an absorptive ionosphere," JASTRP— Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 59, 2101-2110, 1997.
doi:10.1016/S1364-6826(97)00035-7

55. Sonnenschein, E., N. Blaunstein, and D. Censor, "HF ray propagation in the presence of resonance heated ionospheric plasma," JASTRP — Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 60, 1605-1623, 1998.
doi:10.1016/S1364-6826(98)00092-3

56. Sonnenschein, M. and D. Censor, "Simulation of Hamiltonian light beam propagation in nonlinear media," JOSA — Journal of the Optical Society of America, B, Vol. 15, 1335-1345, 1998.
doi:10.1364/JOSAB.15.001335

57. Volterra, V., Theory of Functionals and of Integral and Integro- Differential Equations, Dover, 1959.

58. Censor, D., "Ray tracing in weakly nonlinear moving media," Journal of Plasma Physics, Vol. 16, 415-426, 1976.
doi:10.1017/S0022377800020316

59. Censor, D., "Scattering in velocity dependent systems," Radio Science, Vol. 7, 331-337, 1972.
doi:10.1029/RS007i002p00331

60. Ben-Shimol, Y. and D. Censor, "Contribution to the problem of near zone inverse Doppler effect," Radio Science, Vol. 33, 463-474, 1998.
doi:10.1029/98RS00033