Vol. 30
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Space-Harmonic Effects in Helical Slow-Wave Structure --- an Equivalent Circuit Analysis
By
, Vol. 30, 85-104, 2001
Abstract
The analysis of a lossless helical slow-wave structure (SWS) using equivalent circuit approach, reported elsewhere, had been carried out for the fundamental mode only. This is essentially used to predict the transmission line parameters. Moreover, in the analysis the effect of permittivity on the radial propagation constant has not been considered. The radial propagation constant was considered to be same over the different structure regions. In this paper, the analysis has been developed for the space-harmonic modes considering different radial propagation constant over different structure regions. Due to it, the present analysis becomes more general, accurate and capable of dealing with a wide range of structure parameters. The dispersion relation developed here in terms of the equivalent line parameters for a lossless structure, namely, shunt capacitance per unit length and series inductance per unit length for the space-harmonic modes, as a special case, passes on to those obtained earlier by considering same radial propagation constants over different structure regions and for the fundamental mode. Besides the dispersion characteristics, characteristics impedance has also been predicted in terms of line parameters. The results presented here in terms of the structure parameters can be used for structure design and performance evaluation as well as for the control of any space harmonic of interest. The present analysis has also been validated with those experimental values reported elsewhere.
Citation
S. Ghosh Ashok Kumar Sinha R. K. Gupta S. N. Joshi Pradip Kumar Jain B. N. Basu , "Space-Harmonic Effects in Helical Slow-Wave Structure --- an Equivalent Circuit Analysis," , Vol. 30, 85-104, 2001.
doi:10.2528/PIER00011001
http://www.jpier.org/PIER/pier.php?paper=0001101
References

1. Jain, P. K. and B. N. Basu, "The inhomogeneous loading effects of practical dielectric supports for the helical-slow wave structure of a TWT," IEEE Trans. on Electron Devices, Vol. 34, 2643-2648, 1987.
doi:10.1109/T-ED.1987.23366

2. Ghosh, S., P. K. Jain, and B. N. Basu, "Rigorous tape analysis of inhomogeneously loaded helical slow-wave structures," IEEE Trans. on Electron Devices, Vol. 44, No. 7, 1158-1168, 1997.
doi:10.1109/16.595945

3. Basu, B. N. and A. K. Sinha, "Dispersion-shaping using an inhomogeneous dielectric support for the helix in a travelling-wave tube," International Journal of Electronics, Vol. 50, 235-238, 1981.
doi:10.1080/00207218108901253

4. Ghosh, S., P. K. Jain, and B. N. Basu, "Modified field analysis of inhomogeneously-loaded helical slow-wave structures for TWT’s," International Journal of Electronics, Vol. 81, No. 1, 101-112, 1996.
doi:10.1080/002072196136968

5. Sinha, A. K., R. Verma, R. K. Gupta, L. Kumar, S. N. Joshi, P. K. Jain, and B. N. Basu, "Simplified tape model of arbitrarilyloaded helical slow-wave structures of a traveling-wave tube," Proc. IEE, pt-H, Vol. 139, 347-350, 1992.

6. Ghosh, S., "Analytical studies on inhomogeneously loaded helical structures for broadband TWT’s,", Ph.D. dissertation, Dept. Electron. Eng., Banaras Hindu Univ., Varanasi, India, 1996.

7. Basu, B. N., "Equivalent circuit analysis of a dielectric-supported helix in a metal shell," Int. J. Electronics, Vol. 47, 311-314, 1979.
doi:10.1080/00207217908938647

8. Sinha, A. K. and B. N. Basu, "Circuit parameters for a complex helical SWS combining results for simpler configuration," Indian J. Pure & Appl. Phy., Vol. 50, 235-238, 1980.

9. Kumar, L., R. S. Raju, S. N. Joshi, and B. N. Basu, "Modeling of vane-loaded slow- wave structure for broadband traveling-wave tubes," IEEE Trans. Electron Devices, Vol. 39, 1961-1965, 1992.

10. Sinha, A. K., R. Verma, Mradula, M. Kundu, R. K. Gupta, and H. N. Bandopadhyay, "Interaction structure for Gyrotrons: A study on dispersion, efficiency and cold design," Proc. of the Workshop on Gyrotron and Other Fast Wave Devices, GYROFAD-92, CEERI, Pilani, 1992.

11. Watkins, D. A., Topics in Electromagnetic Theory, John Wiley, New York, 1958.

12. Sensiper, S., "Electromagnetic wave propagation on helical structures," Proc. IRE, Vol. 43, 149-161, 1955.
doi:10.1109/JRPROC.1955.278072

13. Ghosh, S., P. K. Jain, and B. N. Basu, "Role of helix thickness in the field analysis and characterisation of the slow-wave structure of a broadband TWT," J. Inst. Electron & Telecomn. Engrs. of India, Vol. 14, No. 6, 431-438, 1997.

14. Jain, P. K., K. V. R. Murty, S. N. Joshi, and B. N. Basu, "Effect of the finite thickness of the helix wire on the characteristics of the helical slow-wave structure of a travelling-wave tubes," IEEE Trans. Electron Devices, Vol. 34, 1209-1213, 1987.
doi:10.1109/T-ED.1987.23068

15. D’Agostino, S., F. Emma, and C. Paoloni, "Accurate analysis of helical slow-wave structures," IEEE Trans. Electron Devices, Vol. 45, 1605-1613, 1998.
doi:10.1109/16.701495