Vol. 29
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Simultaneity, Causality, and Spectral Representations
By
, Vol. 29, 187-220, 2000
Abstract
Recently Zangari and Censor discussed the non-uniqueness of the spatiotemporal world-view, and proposed a representative alternative based on the Fourier transform as a mathematical model. It was argued that this so called spectral representation, by virtue of the invertibility of the Fourier transform, is fully equivalent to our conventional spatiotemporal world-view, although in the two systems the information is ordered in a radically different manner. Criticism of the new conception can be traced back to the fundamental principles of simultaneity and causality, whose role in the spectral domain has not been sufficiently demonstrated. These questions are carefully investigated in the present study. Simple but concise examples are used to verbally and graphically clarify the mathematics involved in integral transforms, like the Fourier transform under consideration. The transition from the spatiotemporal domain to the spectral domain entails not only a different patterning of data points. What is involved here is that every point in one domain is affecting all points in the other domain, and to follow what happens to simultaneity and causality under such circumstances is not a trivial feat. Even for the general reader, the discussion based on the simple examples should suffice to critically follow the arguments as they unfold. For completeness, the general mathematical formulations are given too. In order to follow the footprints of the spatiotemporal simultaneity and causality concepts into the spectral domain, a special strategy is implemented here: Certain spatiotemporal situations are stated, and then their outcome in the spectral domain is examined. For example, it is shown that if a causal sequence of events is flipped over in time, thus reversing the order of cause and effect, in the spectral domain the associated spectrum will become a mirror image of the original one. The claim that the spectral transforms are invertible, consequently no information is lost in the spectral world-view, is thus substantiated. These ideas are extended to situations involving both space and time. Of particular interest are cases where relatively moving observers are involved, each at rest with respect to an appropriate spatial frame of reference, measuring proper time in this frame. In such cases, time and space are intertwined, hence simultaneity and causality must be appropriately redefined. Both the Galilean, and the Special Relativistic Lorentzian transformations in the spatiotemporal domain, and their corresponding spectral domain Doppler transformations, fit into our argument. Special situations are assumed in the spatiotemporal domain, and their consequent footprints in the spectral domain are investigated. Although a great effort is made to keep the presentation and notation as simple as possible, in some places more sophisticated mathematical concepts, such as the Jacobian associated with the change of integration variables, must be incorporated. Here the general reader will have to accept the (mathematical) facts without proof.
Citation
Dan Censor , "Simultaneity, Causality, and Spectral Representations," , Vol. 29, 187-220, 2000.
doi:10.2528/PIER00032203
http://www.jpier.org/PIER/pier.php?paper=0003223
References

1. Zangari, M. and D. Censor, "Spectral representations: An alternative to the spatiotemporal world view," Synthese, Vol. 112, 97-123, 1997.
doi:10.1023/A:1004964211391

2. Bohm, D., Wholeness and the Implicate Order, Ark Paperbacks, 1980.

3. Gaudiano, P., "Being in the right place at the right time: A commentary on Zangari and Censor’s spectral representations," Synthese, Vol. 112, 125-134, 1997.
doi:10.1023/A:1005017800922

4. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.

5. Einstein, A., "Zur Elektrodynamik bewegter Korper," Ann. Phys. (Lpz.), Vol. 17, 891-921, 1905; English translation: “On the electrodynamics of moving bodies,” The Principle of Relativity, Dover.
doi:10.1002/andp.19053221004

6. Einstein, A., Relativity the Special and General Theory, Hartsdale House, 1947 (original version 1916).

7. Bohm, D., "The Special Theory of Relativity," Benjamin, 1965.

8. Censor, D., "Application-oriented relativistic electrodynamics," PIER — Progress in Electromagnetics Research, J. A. Kong, editor, Vol. 4, Ch. 4, 119–158, Elsevier, 1991; Also “Applicationoriented relativistic electrodynamics (2),” to appear in PIER — Progress in Electromagnetics Research.

9. Doppler, C. J., "Uber das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels," Abhandl. koniglich bohmischen Ges. Wissenschaften, Vol. 5, No. 2, 465-482, 1843.

10. Toman, K., "Christian Doppler and the Doppler effect," Eos, Vol. 65, 1193-1194, 1984.
doi:10.1029/EO065i048p01193

11. Gill, T. P., The Doppler Effect, Academic Press, 1965.

12. Censor, D., "Theory of the Doppler effect — fact, fiction and approximation," Radio Science, Vol. 19, 1027-1040, 1984.
doi:10.1029/RS019i004p01027

13. Pauli, W., Theory of Relativity, Pergamon, 1958, also Dover Publications.

14. Censor, D., "“Waves”, “objects” and special relativity," JEMWA — Journal of Electromagnetic Waves and Applications, Vol. 5, 1365-1391, 1991.
doi:10.1163/156939391X00897

15. Censor, D., "Quasi Doppler effects associated with spatiotemporal translatory, moving, and active boundaries," JEMWA — Journal of Electromagnetic Waves and Applications, Vol. 13, 145-174, 1999.
doi:10.1163/156939399X00790