1. Bossavit, A., Computational Electromagnetism, Academic Press, Boston, 1998.
2. Bossavit, A. and L. Kettunen, "Yee-like schemes on a tetrahedral mesh, with diagonal lumping," Int. J. Numer. Modelling, Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G Google Scholar
3. Bossavit, A., "Computational electromagnetism and geometry. (5): The ‘Galerkin hodge’," J. Japan Soc. Appl. Electromagn. & Mech., 8, Vol. 2, 203-209, 2000. Google Scholar
4. Bossavit, A., "On the notion of anisotropy of constitutive laws: Some implications of the ‘Hodge implies metric’ result," COMPEL, to appear. Google Scholar
5. Di Carlo, A. and A. Tiero, "The geometry of linear heat conduction," Trends in Applications of Mathematics to Mechanics, W. Schneider, H. Troger, and F. Ziegler (Eds.), 281–287, Longman, Harlow, 1991. Google Scholar
6. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Proc. Cambridge Phil. Soc., Vol. 30, 421-427, 1934.
doi:10.1017/S0305004100012664 Google Scholar
7. Dodziuk, J., "Finite-difference approach to the Hodge theory of harmonic forms," Amer. J. Math., Vol. 98, No. 1, 79-104, 1976.
doi:10.2307/2373615 Google Scholar
8. Hiptmair, R., "Discrete Hodge operators,", this volume. Google Scholar
9. Hyman, J. M. and M. Shashkov, "Natural discretizations for the divergence, gradient, and curl on logically rectangular grids," Computers Math. Applic., Vol. 33, No. 4, 81-104, 1997.
doi:10.1016/S0898-1221(97)00009-6 Google Scholar
10. Lee, J.-F. and Z. Sacks, "Whitney elements time domain (WETD) methods," IEEE Trans. Magn., Vol. 31, No. 3, 1325-1329, 1995.
doi:10.1109/20.376223 Google Scholar
11. Maxwell, J. C., "On reciprocal figures and diagrams of forces," Phil. Mag, Series 4, Vol. 27, 250–261, 1864. Google Scholar
12. Muller, W., "Analytic torsion and R-torsion of Riemannian manifolds," Advances in Mathematics, Vol. 28, 233-305, 1978.
doi:10.1016/0001-8708(78)90116-0 Google Scholar
13. Nicolaides, R. and D.-Q. Wang, "Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions," Math. Comp., Vol. 67, 947-963, 1998.
doi:10.1090/S0025-5718-98-00971-5 Google Scholar
14. Post, E. J., "The constitutive map and some of its ramifications," Annals of Physics, Vol. 71, 497-518, 1972.
doi:10.1016/0003-4916(72)90129-7 Google Scholar
15. Silvester, P. and M. V. K. Chari, "Finite element solution of saturable magnetic field problems," IEEE Trans., PAS-89, Vol. 7, 1642-1651, 1970.
doi:10.1109/TPAS.1970.292812 Google Scholar
16. Taflove, A., Computational Electromagnetics, The Finite Difference in Time Domain Method, Artech House, Boston, London, 1995.
17. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
18. Tonti, E., "Algebraic topology and computational electromagnetism," 4th Int. Workshop on Electric and Magnetic Fields, 284-294, A.I.M., Marseilles, 1998. Google Scholar
19. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Modelling, Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
20. Weiland, T., "Maxwell’s grid equations," Proc. URSI Int. Symp. Electromagnetic Theory, 37-39, Sydney, Australia, 1992. Google Scholar
21. Whitney, H., Geometric Integration Theory, Princeton U.P., Princeton, 1957.
doi:10.1515/9781400877577
22. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. & Prop., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar