1. Bamberg, P. and S. Sternberg, "A Course in Mathematics for Students of Physics: 1–2," Cambridge University Press, Cambridge, 1988. Google Scholar
2. Chang, S. C., X. Y. Wang, and C. Y. Chow, "The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws," J. Comput. Phys., Vol. 56, 89-136, 1999.
doi:10.1006/jcph.1999.6354 Google Scholar
3. Lebesgue, H., Lecons sur l’Integration, Chelsea, New York, 1973.
4. Madsen, N. K., "Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids," J. Comput. Phys., Vol. 119, 34-45, 1995.
doi:10.1006/jcph.1995.1114 Google Scholar
5. Mattiussi, C., "The finite volume, finite element, and finite difference methods as numerical methods for physical field problems," Advances in Imaging and Electron Physics, P. Hawkes (ed.), Vol. 113, 1–146, 2000. Google Scholar
6. Truesdell, C. and R. A. Toupin, "The classical field theories," Handbuch der Physik, S. Flugge (ed.), Vol. 3/1, 226–793, Springer-Verlag, Berlin, 1960. Google Scholar
7. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Modelling, Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
8. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar