1. Yosida, K., Functional Analysis, Springer-Verlag,Berlin, 1980.
2. Pierce, J. R., Symbols, Signals and Noise, Harper Torchbooks, New York, 1965.
3. Bossavit, A., "On the geometry of electromagnetism. (1): Euclidean space," J. Japan Soc. Appl. Electromagn. & Mech., Vol. 6, No. 1, 17-28, 1998. Google Scholar
4. Bossavit, A., "On the geometry of electromagnetism. (2): Geometrical objects," J. Japan Soc. Appl. Electromagn. & Mech., Vol. 6, 114-123, 1998. Google Scholar
5. Bossavit, A., "On the geometry of electromagnetism. (3): Integration,Stok es’,F araday’s laws," J. Japan Soc. Appl. Electromagn. & Mech., Vol. 6, 233-240, 1998. Google Scholar
6. Bossavit, A., "On the geometry of electromagnetism. (4): Maxwell’s house," J. Japan Soc. Appl. Electromagn. & Mech., Vol. 6, 318-326, 1998. Google Scholar
7. Meyer, B., Object-Oriented Software Construction, Prentice Hall, Hertfordshire, UK, 1988.
8. Bossavit, A., Computational Electromagnetism, Variational Formulations, Edge Elements, Complementarity, Academic Press, Boston, 1998.
9. de Rham, G., Differentiable Manifolds, Springer,1984. (Translated from the French).
10. Flanders, H., Differential Forms with Applications to the Physical Sciences, Dover Publications, 1989.
11. Bossavit, A., "On non-linear magnetostatics: dualcomplementary models and ‘mixed’ numerical methods," Proc. of European Conf. on Math. in Ind., Glasgow, August 1988, J. Manby (ed.), 3–16, Teubner, Stuttgart, 1990. Google Scholar
12. Bossavit, A., "Differen tial forms and the computation of fields and forces in electromagnetism," European J. Mech., B/Fluids, Vol. 10, No. 5, 474-488, 1991. Google Scholar
13. Lefschetz, S., Algebraic Topology, No. 27, A.M.S. Colloquim Publication, New York, 1942.
14. Cartan, H. and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1952.
15. Hilton, P. J. and S. Wylie, "Homology Theory, An Introduction to Algebraic Topology," Cambridge University Press, Cambridge, 1965. Google Scholar
16. Hocking, J. G. and G. S. Young, "Topology," Addison-Wesley Pub. Co., Reading, Mass., 1961. Google Scholar
17. Halmos, P. R., "Naive Set Theory," Springer-Verlag, 1974. Google Scholar
18. Kotiuga, P. R., "Hodge decompositions and computational electromagnetics,", Ph.D. thesis, McGill University, Montreal, Canada, 1984. Google Scholar
19. Bossavit, A., "Most general ‘non-local’ boundary conditions for the Maxwell equations in a bounded region," Proceedings of ISEF’99 -9th Int. Symp. Elec. Magn. Fields. in Elec. Eng., Pavia, Italy, 1999. Google Scholar
20. Connor, P. E., "The Neumann’s problem for differential forms on Riemannian manifolds," Memoirs of the AMS, No. 20, 1956. Google Scholar
21. Vick, J. W., Homology Theory, Academic Press, New York, 1973.
22. Stillwell, J., Classical Topology and Combinatorial Group Theory, Springer-Verlag, New York, 1980.
doi:10.1007/978-1-4684-0110-3
23. Markus, H. and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn & Bacon, 1964.
24. Kondo, K. and M. Iri, "On the theory of trees, cotrees, multitrees, and multicotrees," RAAG Memoirs, II, No. Article A-VII, 220–261, 1959. Google Scholar