1. Bank, R. and D. Rose, "Some error estimates for the box method," SIAM J. Numer. Anal., Vol. 24, 777-787, 1987.
doi:10.1137/0724050 Google Scholar
2. Baranger, J., J.-F. Maitre, and F. Oudin, "Connection between finite volume and mixed finite element methods," RAIRO, Modelisation Math. Anal. Numer., Vol. 30, 445-465, 1996.
doi:10.1051/m2an/1996300404451 Google Scholar
3. Bossavit, A., "Mixed finite elements and the complex of Whitney forms," The Mathematics of Finite Elements and Applications VI, J. Whiteman (ed.), 137–144, Academic Press, London, 1988. Google Scholar
4. Bossavit, A., "A new viewpoint on mixed elements," Meccanica, Vol. 27, 3-11, 1992.
doi:10.1007/BF00452998 Google Scholar
5. Bossavit, A., Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements, No. 2 in Academic Press Electromagnetism Series, Academic Press, San Diego, 1998.
6. Bossavit, A., "How weak is the weak solution in finite element methods?," IEEE Trans. Magnetics, Vol. MAG-34, 2429-2432, 1998.
doi:10.1109/20.717558 Google Scholar
7. Bossavit, A., "On the geometry of electromagnetism IV: ‘Maxwell’s house’," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 318-326, 1998. Google Scholar
8. Bossavit, A., "On the geometry of electromagnetism I: Affine space," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 17-28, 1998. Google Scholar
9. Bossavit, A., "On the geometry of electromagnetism II: Geometrical objects," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 114-123, 1998. Google Scholar
10. Bossavit, A., "On the geometry of electromagnetism III: Integration, Stokes’, Faraday’s law," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 6, 233-240, 1998. Google Scholar
11. Bossavit, A., "Computational electromagnetism and geometry. Building a finite-dimensional “Maxwell’s house” I: Network equations," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 7, 150-159, 1999. Google Scholar
12. Bossavit, A., "Computational electromagnetism and geometry II: Network constitutive laws," J. Japan Soc. Appl. Electromagnetics & Mech., Vol. 7, 294-301, 1999. Google Scholar
13. Bossavit, A., "Generalized finite differences in computational electromagnetics,", this volume. Google Scholar
14. Bossavit, A. and L. Kettunen, "Yee–like schemes on a tetrahedral mesh with diagonal lumping," Int. J. Numer. Modelling, Vol. 12, 129-142, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G Google Scholar
15. Bossavit, A. and L. Kettunen, "Yee-like schemes on staggered cellular grids: A synthesis between FIT and FEM approaches,", contribution to COMPUMAG ’99., 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<129::AID-JNM327>3.0.CO;2-G Google Scholar
16. Brenner, S. and R. Scott, Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, Springer-Verlag, New York, 1994.
doi:10.1007/978-1-4757-4338-8
17. Brezzi, F. and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.
doi:10.1007/978-1-4612-3172-1
18. Burke, W., Applied Differential Geometry, Cambridge University Press, Cambridge, 1985.
doi:10.1017/CBO9781139171786
19. Cartan, H., Formes Differentielles, Hermann, Paris, 1967.
20. Chew, W., "Electromagnetic theory on a lattice," J. Appl. Phys., Vol. 75, 4843-4850, 1994.
doi:10.1063/1.355770 Google Scholar
21. Ciarlet, P., "The finite element method for elliptic problems," Studies in Mathematics and its Applications, Vol. 4, North-Holland, Amsterdam, 1978. Google Scholar
22. Ciarlet, Jr., P. and J. Zou, "Fully discrete finite element approaches for time-dependent Maxwell equations," Numer. Math., Vol. 82, 193-219, 1999.
doi:10.1007/s002110050417 Google Scholar
23. De La Bourdonnay, A. and S. Lala, "Duality between finite elements and finite volumes and Hodge operator," Numerical Methods in Engineering ’96, 557-561, Wiley & Sons, Paris, 1996. Google Scholar
24. Dezin, A., Multidimensional Analysis and Discrete Models, CRC Press, Boca Raton, FL, USA, 1995.
25. Girault, V. and P. Raviart, Finite Element Methods for Navier- Stokes Equations, Springer-Verlag, Berlin, 1986.
doi:10.1007/978-3-642-61623-5
26. Hackbusch, W., "On first and second order box schemes," Computing, Vol. 41, 277-296, 1989.
doi:10.1007/BF02241218 Google Scholar
27. Hiptmair, R., "Canonical construction of finite elements," Math. Comp., Vol. 68, 1325-1346, 1999.
doi:10.1090/S0025-5718-99-01166-7 Google Scholar
28. Hyman, J. and S. Steinberg, "The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials," J. Comp. Phys., Vol. 132, 130-148, 1997.
doi:10.1006/jcph.1996.5633 Google Scholar
29. Hyman, J. and M. Shashkov, "Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids," Applied Numerical Mathematics, Vol. 25, 413-442, 1997.
doi:10.1016/S0168-9274(97)00097-4 Google Scholar
30. Hyman, J. and M. Shashkov, "Natural discretizations for the divergence, gradient, and curl on logically rectangular grids," International Journal of Computers & Mathematics with Applications, Vol. 33, 81-104, 1997.
doi:10.1016/S0898-1221(97)00009-6 Google Scholar
31. Hyman, J. and M. Shashkov, "Mimetic discretizations for Maxwell’s equations," J. Comp. Phys., Vol. 151, 881-909, 1999.
doi:10.1006/jcph.1999.6225 Google Scholar
32. Hyman, J. and M. Shashkov, "The orthogonal decomposition theorems for mimetic finite difference methods," SIAM Journal on Numerical Analysis, Vol. 36, 788-818, 1999.
doi:10.1137/S0036142996314044 Google Scholar
33. Iwaniec, T., "Nonlinear differential forms,", Lectures notes of the International Summer School in Jyvaskyla, 1998 80, Department of Mathematics, University of Jyvaskyla, Jyvaskyla, Finland, 1999. Google Scholar
34. Lala, S. and A. de la Bourdonnaye, "A finite-element method for Maxwell system preserving Gauss laws and energy," Tech. Rep. RR-3557, INRIA, Sophia Antipolis, France, November 1998. Submitted to Numer. Math.. Google Scholar
35. Mattiussi, C., "An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology," J. Comp. Phys., Vol. 9, 295-319, 1997. Google Scholar
36. Monk, P., "An analysis of N´ed´elec’s method for the spatial discretization of Maxwell’s equations," J. Comp. Appl. Math., Vol. 47, 101-121, 1993.
doi:10.1016/0377-0427(93)90093-Q Google Scholar
37. Monk, P. and E. Suli, "A convergence analysis of Yee’s scheme on nonuniform grids," SIAM J. Numer. Anal., Vol. 31, 393-412, 1994.
doi:10.1137/0731021 Google Scholar
38. Nedelec, J., "Mixed finite elements in R3," Numer. Math., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415 Google Scholar
39. Nicolaides, R., "Direct discretization of planar div-curl problems," SIAM J. Numer. Anal., Vol. 29, 32-56, 1992.
doi:10.1137/0729003 Google Scholar
40. Nicolaides, R. and D.-Q. Wang, "Convergence analysis of a covolume scheme for Maxwell’s equations in three dimensions," Math. Comp., Vol. 67, 947-963, 1998.
doi:10.1090/S0025-5718-98-00971-5 Google Scholar
41. Nicolaides, R. and X. Wu, "Covolume solutions of threedimensional div-curl equations," SIAM J. Numer. Anal., Vol. 34, 2195-2203, 1997.
doi:10.1137/S0036142994277286 Google Scholar
42. Sacco, R. and F. Saleri, "Exponentially fitted shape functions for advection-dominated flow problems in two dimensions," J. Comput. Appl. Math., Vol. 67, 161-165, 1996.
doi:10.1016/0377-0427(95)00149-2 Google Scholar
43. Schuhmann, R. and T. Weiland, "A stable interpolation technique for FDTD on non-orthogonal grids," Int. J. Numer. Model., Vol. 11, 299-306, 1998.
doi:10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A Google Scholar
44. Shashkov, M., Conservative Finite-Difference Methods on General Grids, CRC Press, Boca Raton, 1996.
45. Shashkov, M. and S. Steinberg, "Solving diffusion equations with rough coefficients in rough grids," J. Comp. Phys., Vol. 129, 383-405, 1996.
doi:10.1006/jcph.1996.0257 Google Scholar
46. Shashkov, M., B. Swartz, and B. Wendroff, "Local reconstruction of a vector field from its components on the faces of grid cells," Journal of Computational Physics, Vol. 139, 406-408, 1998.
doi:10.1006/jcph.1997.5877 Google Scholar
47. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge: A reinterpretation of finite element techniques," IEEE Trans. Mag., Vol. 35, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
48. Teixeira, F. and W. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
49. Tonti, E., "On the geometrical structure of electromagnetism," Graviation, Electromagnetism and Geometrical Structures, G. Ferrarese (ed.), 281–308, Pitagora, Bologna, Italy, 1996. Google Scholar
50. van Rienen, U., "Finite integration technique on triangular grids revisited," Int. J. Numer. Model., Vol. 12, 107-128, 1999.
doi:10.1002/(SICI)1099-1204(199901/04)12:1/2<107::AID-JNM322>3.0.CO;2-2 Google Scholar
51. Weiland, T., "Die Diskretisierung der Maxwell-Gleichungen," Phys. Bl., Vol. 42, 191-201, 1986.
doi:10.1002/phbl.19860420710 Google Scholar
52. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," Int. J. Numer. Modelling, Vol. 9, 295-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
53. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 16, 302-307, 1966. Google Scholar