1. Weiland, T., "A discretization method for the solution of Maxwell’s equations for six-component fields," Electronics and Communication (AEU), Vol. 31, 116-120, 1977. Google Scholar
2. Weiland, T., "Time domain electromagnetic field computation with finite difference methods," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 9, 259-319, 1996.
doi:10.1002/(SICI)1099-1204(199607)9:4<295::AID-JNM240>3.0.CO;2-8 Google Scholar
3. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Ant. Prop., Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
4. van Rienen, U. and T. Weiland, "Triangular discretization method for the evaluation of RF-fields in waveguides and cylindrically symmetric cavities," Particle Accelerators, Vol. 20, 239-267, 1987. Google Scholar
5. Schuhmann, R. and T. Weiland, "A stable interpolation technique for FDTD on nonorthogonal grids," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 11, 299-306, 1998.
doi:10.1002/(SICI)1099-1204(199811/12)11:6<299::AID-JNM314>3.0.CO;2-A Google Scholar
6. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique,", this volume. Google Scholar
7. Thoma, P., "Numerical stability of finite difference time domain methods," IEEE Trans. Mag., Vol. 34, 2740-2743, 1998.
doi:10.1109/20.717636 Google Scholar
8. Thoma, P., "Zur numerischen L¨osung der Maxwellschen Gleichungen im Zeitbereich,", Ph.D. Thesis, Darmstadt University of Technology, 1997.
doi:10.1109/20.717636 Google Scholar
9. Weiland, T., "A numerical method for the solution of the eigenwave problem of longitudinally homogeneous waveguides," Electronics and Communication (AEU), Vol. 31, 308-314, 1977. Google Scholar
10. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.