1. Pauli, W., Elettrodinamica, (translation of Vorlesung Elektrodynamik), Boringhieri (ed.), 1964.
2. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
3. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, 2-24, 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
4. Holland, R., "Finite difference solutions of Maxwell’s equations in generalized nonorthogonal coordinates," IEEE Transactions on Nuclear Science, Vol. 30, No. 6, 4689-4591, 1983. Google Scholar
5. Fusco, M., "FDTD algorithm in curvilinear coordinates," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 76-89, 1990.
doi:10.1109/8.43592 Google Scholar
6. Lee, J. F., R. Palandech, and R. Mittra, "Modeling threedimensional discontinuites in waveguides using nonorthogonal FDTD algorithm," IEEE Transactions on Microwave and Techniques, Vol. 40, No. 2, 346-352, 1992.
doi:10.1109/22.120108 Google Scholar
7. Lee, C. F., B. J. McCartin, R. T. Shin, and J. A. Kong, "A triangular-grid finite-difference time-domain method for electromagnetic scattering problems," Journal of Electromagnetics Waves and Applications, Vol. 8, No. 4, 449-470, 1994. Google Scholar
8. Madsen, N. K., "Divergence preserving discrete surface integral methods for Maxwell’s curl equations using non-orthogonal unstructured grids," Journal of Computational Physics, Vol. 119, 34-45, 1995.
doi:10.1006/jcph.1995.1114 Google Scholar
9. Hano, M. and T. Itoh, "Three-dimensional time-domain method for solving Maxwell’s equations based on circumcenters of elements," IEEE Transactions on Magnetics, Vol. 32, No. 3, 946-949, 1996.
doi:10.1109/20.497398 Google Scholar
10. Schuhmann, R. and T. Weiland, "FDTD on nonorthogonal grids withtriangular fillings," IEEE Transactions on Magnetics, Vol. 35, No. 3, 1470-1473, 1999.
doi:10.1109/20.767244 Google Scholar
11. Taflove, A., Computational Electrodynamics:The Finite- Difference Time-Domain Method, Artech House, 1995.
12. Tonti, E., "Finite formulation of the electromagnetic field,", this volume. Google Scholar