Vol. 33
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Comparison of Luebbers' and Maliuzhinets' Wedge Diffraction Coefficients in Urban Channel Modelling
By
, Vol. 33, 1-28, 2001
Abstract
Luebbers' and Maliuzhinets' solutions for diffraction by alossy wedge are compared in order to model the urban propagationchannel. Derivation, validity criteria and accuracy of impedanceboundary conditions (IBCs) --- as a main approximation embedded inthe Maliuzhinets' solution—are discussed. A modified (a slightlyimproved) Luebbers diffraction coefficient is proposed. The UniformTheory of Diffraction (UTD) Maliuzhinets diffraction coefficient isgiven in a structured form that might facilitate its use. Detailednumerical comparisons of the above-mentioned solutions with method-of-moments solutions using either exact boundary conditions or IBCsare done for canonical configurations.
Citation
Mourad Aidi J. Lavergnat , "Comparison of Luebbers' and Maliuzhinets' Wedge Diffraction Coefficients in Urban Channel Modelling," , Vol. 33, 1-28, 2001.
doi:10.2528/PIER00112005
http://www.jpier.org/PIER/pier.php?paper=0011205
References

1. Rossi, J. P. and A. J. Levy, "A ray model for decimetric radiowave propagation in an urban area," Radio Science, Vol. 27, No. 6, 971-979, 1992.
doi:10.1029/92RS01781

2. Lebherz, M., W. Wiesbeck, and W. Krank, "A versatile wave propagation model for the VHF/UHF range considering three dimensional," IEEE Trans. Ant. Prop., Vol. 40, No. 10, 1121-1131, 1992.
doi:10.1109/8.182444

3. K¨urner, T., D. J. Cichon, and W. Wiesbeck, "Evaluation and verification of the VHF/UHF propagation channel based on a 3-D-wave propagation model," IEEE Trans. Ant. Prop., Vol. 44, No. 3, 393-404, 1996.
doi:10.1109/8.486310

4. Luebbers, R. J., "Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss," IEEE Trans. Ant. Prop., Vol. 32, No. 1, 70-76, 1984.
doi:10.1109/TAP.1984.1143189

5. Luebbers, R. J., "Comparison of lossy wedge diffraction coefficients with application to mixed path propagation loss prediction," IEEE Trans. Ant. Prop., Vol. 36, No. 1, 1031-1034, 1988.
doi:10.1109/8.7210

6. Luebbers, R. J., "A heuristic UTD slope diffraction coefficient for rough lossy wedges," IEEE Trans. Ant. Prop., Vol. 37, No. 2, 206-211, 1989.
doi:10.1109/8.18707

7. Kouyyoumjian, R. G. and P. H. Pathak, "A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface," Proc. IEEE, Vol. 62, No. 11, 1448-1461, 1974.
doi:10.1109/PROC.1974.9651

8. Tiberio, R., G. Pelosi, and G. Manara, "A uniform GTD formulation for the diffraction by a wedge with impedance faces," IEEE Trans. Ant. Prop., Vol. 33, No. 8, 867-873, 1985.
doi:10.1109/TAP.1985.1143687

9. Tiberio, R., G. Pelosi, G. Manara, and P. H. Pathak, "High-frequency scattering from a wedge with impedance faces illuminated by a line source Part I: diffraction," IEEE Trans. Ant. Prop., Vol. 37, No. 2, 212-217, 1989.
doi:10.1109/8.18708

10. Bergljung, C. and L. G. Olsson, "A comparison of solutions to the problem of diffraction of a plane wave by a dielectric wedge," IEEEAnt. and Prop. Society International Symposium, Vol. 4, 1861-1864.

11. Demetrescu, C, C. C. Constantinou, and M. J. Mehler, "Scattering by a right-angled lossy dielectric wedge," IEE Proc.-Microw. Antennas Propag., Vol. 144, No. 5, 1997.
doi:10.1049/ip-map:19971298

12. Leontovich, M. A., "Approximate boundary conditions for the electromagnetic field on the surface of a good conductor," Investigations on radiowave propagation, 1948.

13. Senior, T. B. A., "Approximate boundary conditions," IEEE Trans. Ant. Prop., Vol. 29, No. 5, 826-829, 1981.
doi:10.1109/TAP.1981.1142657

14. Senior, Approximate boundary conditions for, "Approximate boundary conditions for homogeneous dielectric bodies," J. of Electromagn. Waves and Appl., Vol. 9, No. 10, 1227-1239, 1995.

15. Huddleston, P. L., "Scattering by finite, open cylinders using approximate boundary conditions," IEEE Trans. Ant. Prop., Vol. 37, No. 2, 253-257, 1989.
doi:10.1109/8.18715

16. Wang, D.-S., "Limits and validity of the impedance boundary condition on penetrable surfaces," IEEE Trans. Ant. Prop., Vol. 35, No. 4, 453-457, 1987.
doi:10.1109/TAP.1987.1144125

17. James, G. L., "Geometrical Theory of Diffraction for Electromagnetic Waves," Peter Peregrinus Ldt., 1986.

18. Aidi, , M. and Approximation of the Maliuzhinets, "Approximation of the Maliuzhinets function," J. of Electromagnetic Waves and Applications, Vol. 10, 1395-1411, 1996.
doi:10.1163/156939396X00153