Vol. 34
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Contrast Source Inversion Method: State of Art
By
, Vol. 34, 189-218, 2001
Abstract
We discuss the problem of the reconstruction of the profile of an inhomogeneous object from scattered field data. Our starting point is the contrast source inversion method, where the unknown contrast sources and the unknown contrast are updated by an iterative minimization of a cost functional. We discuss the possibility of the presence of local minima of the nonlinear cost functional and under which conditions they can exist. Inspired by the successful implementation of the minimization of total variation and other edgepreserving algorithms in image restoration and inverse scattering, we have explored the use of these image-enhancement techniques as an extra regularization. The drawback of adding a regularization term to the cost functional is the presence of an artificial weighting parameter in the cost functional, which can only be determined through considerable numerical experimentation. Therefore, we first discuss the regularization as a multiplicative constraint and show that the weighting parameter is now completely prescribed by the error norm of the data equation and the object equation. Secondly, inspired by the edge-preserving algorithms, we introduce a new type of regularization, based on a weighted L2 total variation norm. The advantage is that the updating parameters in the contrast source inversion method can be determined explicitly, without the usual line minimization. In addition this new regularization shows excellent edge-preserving properties. Numerical experiments illustrate that the present multiplicative regularized inversion scheme is very robust, handling noisy as well as limited data very well, without the necessity of artificial regularization parameters.
Citation
Peter Van den Berg A. Abubakar , "Contrast Source Inversion Method: State of Art," , Vol. 34, 189-218, 2001.
doi:10.2528/PIER01061103
http://www.jpier.org/PIER/pier.php?paper=0106113
References

1. Abubakar, A. and P. M. van den Berg, "Nonlinear inversion in electrode logging in a highly deviated formation with invasion using an oblique coordinate system," IEEE Trans. Geosci. Remote Sensing, Vol. 38, 25-38, 2000.
doi:10.1109/36.823898

2. Abubakar, A., P. M. van den Berg, and B. J. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Trans. Electron., E83-C, 1864-1874, 2000.

3. Acar, R. and C. R. Vogel, "Analysis of bounded variation penalty methods for ill-posed problems," Inverse Problems, Vol. 10, 1217-1229, 1994.
doi:10.1088/0266-5611/10/6/003

4. Charbonnier, P., L. Blanc-F´eraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Trans. Image Process., Vol. 6, 298-311, 1996.
doi:10.1109/83.551699

5. Blomgren, P., T. F. Chan, P. Mulet, and C. K. Wong, "Total variation image restorations: numerical methods and extensions," IEEE Proc. ICIP 97, 384-387, 1997.

6. Chan, T. F. and C. K. Wong, "Total variation blind deconvolution," IEEE Trans. on Image Processing, Vol. 7, 370-375, 1998.
doi:10.1109/83.661187

7. Chew, W. C., "Complexity issues in inverse scattering problems," Proceedings of Antennas and Propagation Society, IEEE International Symposium, Vol. 3, 1627, 1999.

8. Colton, D., J. Coyle, and P. Monk, "Recent developments in inverse acoustic scattering theory," Siam Review, Vol. 42, 369-414, 2000.
doi:10.1137/S0036144500367337

9. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer, Berlin, 1992.
doi:10.1007/978-3-662-02835-3

10. Colton, D. and P. Monk, "The numerical solution of an inverse scattering problem for acoustic waves," IMA Journal of Applied Mathematics, Vol. 49, 162-184, 1992.
doi:10.1093/imamat/49.2.163

11. Dobson, D. C. and F. Santosa, "An image-enhancement technique for electrical impedance tomography," Inverse Problems, Vol. 10, 317-334, 1994.
doi:10.1088/0266-5611/10/2/008

12. Dobson, D. C. and F. Santosa, "Recovery of blocky images for noisy and blurred data," SIAM Journal of Applied Mathematics, Vol. 56, 1181-1198, 1996.
doi:10.1137/S003613999427560X

13. Dourthe, C., Ch. Pichot, J. Y. Dauvignac, L. Blanc-Feraud, and M. Barlaud, "Regularized bi-conjugate gradient algorithm for tomographic reconstruction of buried objects," IEICE Trans. Electron., Vol. E83-C, 1858-1863, 2000.

14. Habashy, T. M., M. L. Oristaglio, and A. T. de Hoop, "Simultaneous nonlinear reconstruction of two-dimensional permittivity and conductivity," Radio Science, Vol. 29, 1101-1118, 1994.
doi:10.1029/93RS03448

15. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, 561-580, 1992.
doi:10.1137/1034115

16. Isernia, T., V. Pascazio, and R. Pierri, "On the local mimina in a tomographic imaging technique," IEEE Trans. Geosci. Remote Sensing, to appear.

17. Kleinman, R. E. and P. M. van den Berg, "A modified gradient method for two-dimensional problems in tomography," J. Computat. Appl. Math., Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y

18. Kleinman, R. E. and P. M. van den Berg, "An extended range modified gradient technique for profile inversion," Radio Science, Vol. 28, 877-884, 1993.
doi:10.1029/93RS01076

19. Kleinman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Science, Vol. 29, 1157-1169, 1994.
doi:10.1029/93RS03445

20. Kohn, R. V. and A. McKenney, "Numerical implementation of a variational method for electrical impedance tomography," Inverse Problems, Vol. 6, 389-414, 1990.
doi:10.1088/0266-5611/6/3/009

21. Lesselier, D. and B. Duchene, "Wavefield inversion of objects in stratified environments. From backpropagation schemes to full solutions," Review of Radio Science, 1993–1996, R. Stone (ed.), 235-268, Oxford University Press, Oxford, 1996.

22. Lobel, P., L. Blanc-Feraud, Ch. Pichot, and M. Barlaud, "A new regularization scheme for inverse scattering," Inverse Problems, Vol. 13, 403-410, 1997.
doi:10.1088/0266-5611/13/2/013

23. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a levelset," Inverse Problems, Vol. 14, 685-706, 1998.
doi:10.1088/0266-5611/14/3/018

24. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas and Propagation, Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

25. Rudin, L., S. Osher, and C. Fatemi, "Nonlinear total variation based noise removal algorithm," Physica, Vol. 60D, 259-268, 1992.

26. Sabatier, P. C., "Past and future of inverse problems," J. Math. Phys., Vol. 41, 4082-4124, 2000.
doi:10.1063/1.533336

27. Belkebir, K. and A. G. Tijhuis, "Using multiple frequency information in the iterative solution of a two-dimensional non-linear inverse problem," Proc. PIERS 96: Progress In Electromagnetic Research Symposium, 353, Innsbruck, Austria, 1996.

28. Van den Berg, P. M., "Iterative computational techniques in scattering based upon the integrated square error criterion," IEEE Trans. Antennas and Propagation, Vol. 32, 1063-1071, 1981.
doi:10.1109/TAP.1984.1143213

29. Van den Berg, P. M., "Non-linear scalar inverse scattering: algorithms and applications," Scattering, R. Pike and P. C. Sabatier (eds.), Chapter 1.3.3., Academic Press, London, 2001, to appear.

30. Van den Berg, P. M., A. L. van Broekhoven, and A. Abubakar, "Extended contrast source inversion," Inverse Problems, Vol. 15, 1325-1344, 1999.
doi:10.1088/0266-5611/15/5/315

31. Van den Berg, P. M. and R. E. Kleinman, "A total variation enhanced modified gradient algorithm for profile reconstruction," Inverse Problems, Vol. 11, L5-L10, 1995.
doi:10.1088/0266-5611/11/3/002

32. Van den Berg, P. M. and R. E. Kleinman, "A contrast source inversion method," Inverse Problems, Vol. 13, 1607-1620, 1997.
doi:10.1088/0266-5611/13/6/013

33. Vogel, C. R. and M. E. Oman, "Iterative methods for total variation denoising," SIAM Journal of Scientific Computing, Vol. 17, 227-238, 1996.
doi:10.1137/0917016

34. Zhdanov, M. and G. Hursan, "3D electromagnetic inversion based on quasi-analytical approximation," Inverse Problems, Vol. 16, 1297-1322, 2000.
doi:10.1088/0266-5611/16/5/311