Vol. 41
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Numerical Studies of Metallic PBG Structures
By
, Vol. 41, 133-157, 2003
Abstract
Abstract-Photonic Bandgap (PBG) materials have been investigated for their versatility in controlling the propagation of electromagnetic waves [1, 2]. In order to determine PBG structures responses, several analytical or numerical methods are used, such as:
  • The plane wave method applied to solve Maxwell's equations [3].
  • The transfer matrix method, based on the wire grating impedance developed by N. Marcuvitz [4].
  • The Finite Element Method (FEM) exhibits, e.g., the frequency response of reflection and transmission coefficients of the PBG materials when they have infinite surfaces and are excited by plane wave. The FEM method can be also used in the case of finite structure fed by a dipole.
  • solves the discretized Maxwell's equations in the time domain and evaluates the electromagnetic field components. These EM fields are then obtained in the frequency domain thanks to a Fourier Transform.
First of all, we present a parametrical study using a 3D Finite Element method software. This study allows to estimate the role of any parameters on the reflection and transmission coefficients and then to design a PBG structure in the X-band (8-12 GHz). Continuous and discontinuous structures are presented. Then, we present a numerical analysis of PBG structures, using the FDTD method in order to understand the propagation phenomena in these periodic materials.
Citation
, "Numerical Studies of Metallic PBG Structures," , Vol. 41, 133-157, 2003.
doi:10.2528/PIER02010806
http://www.jpier.org/PIER/pier.php?paper=0201086
References

1. Yablonovitch, E., "Photonic band-gap structures," J. Opt. Soc. Amer. B, Vol. 10, No. 2, 283-295, 1993.

2. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals, Princeton Univ. Press, Princeton, NJ, 1995.

3. Zhang, Z. and S. Satpathy, "Electromagnetic waves in periodic structures: Bloch wave solution of Maxwell's equations," Physical Review Letters, Vol. 65, 1990.

4. Marcuvitz, N., Waveguide Handbook, MacGraw Hill Book Company, 1951.

5., Commercial 3D finite-element package., Vol. 7, Ansoft-HFSS (High Frequency Structure Simulator).

6. Ho, K. M, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 1990.

7. Ozbay., E. et al., "Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods," Phys. Rev., 1994.

8. Poilasne, G., P. Pouliguen, K. Mahdjoubi, L. Desclos, and C. Terret, "Active metallic photonic band-gap materials (MPBG): Experimental results on beam shaper," IEEE Transaction on Antennas and Propagation, Vol. 48, No. 1, 117-119, 2000.
doi:10.1109/8.827392

9. De Lustrac, A., F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and E. Akmansoy, "Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths," Applied Physical Letters, Vol. 75, No. 9, 1625-1627, 1999.
doi:10.1063/1.124775

10. Taflove, A. and M. E. Brodwin, "Numerical solution of steady state electromagnetic scattering problems using the time-domain dependent Maxwell's equations," IEEE Microwave Theory and Techniques, Vol. 23, No. 8, 1975.

11. Taflove, A., Advances in Computational Electrodynamics, the Finite-Difference Time-Domain Method.

12. Thevenot, M., A. Reinex, and B. Jecko, "FDTD to analyze complex PBG structures in the reciprocal space," Microwave and Optical Technology Letters, Vol. 21, No. 1, 1999.
doi:10.1002/(SICI)1098-2760(19990405)21:1<25::AID-MOP7>3.0.CO;2-2

13. Guiffaut, C., FDTD Code Developed in RENNES..

14. MATLAB edited by The Mathworks Inc., Computation, Computation, Visualization and Programming Package..

15. Collardey, S., G. Poilasne, A.-C. Tarot, P. Pouliguen, K. Mahdjoubi, and C. Terret, "Metallic photonic band-gap propagation modes characterization," Microwave and Optical Technology Letters, No. 3, 2001.

16. Collardey, S., G. Poilasne, A.-C. Tarot, P. Pouliguen, K. Mahdjoubi, and C. Terret, "Propagation modes in k-space and radiation pattern of metallic photonic band gap materials," ISAP2000, 21-25, 2000.