Vol. 41
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
FDTD Simulations of Reconfigurable Electromagnetic Band Gap Structures for Millimeter Wave Applications
By
, Vol. 41, 159-183, 2003
Abstract
Metallo-dielectric electromagnetic bandgap (EBG) structures are studied in the millimeter regime with a finite difference time domain (FDTD) simulator. Several EBG waveguiding structures are considered for millimeter-wave power splitting, switching and filtering operations. It is demonstrated that triangular EBG structures lend themselves naturally to the design of Y-power splitters. Square EBG structures with circular and square rods are shown to lead naturally to straight in-line waveguide filter applications. Comparisons between EBG millimeter-wave waveguide filters formed with dielectric and metallic rods are given. It is shown that high quality broad bandwidth, millimeter-wave bandstop filters can be realized with square EBG structures with circular metallic rods. It is demonstrated that multiple bandstop performance in a single device can be obtained by cascading together multiple EBG millimeter-wave waveguide filters. It is also demonstrated that one can control the electromagnetic power flow in these millimeter-wave EBG waveguide devices by introducing additional local defects. It is shown that the Y-power splitter can be made reconfigurable by using imposed current distributions to achieve these local defects and, consequently, that a millimeter-wave EBG switch can be realized.
Citation
"FDTD Simulations of Reconfigurable Electromagnetic Band Gap Structures for Millimeter Wave Applications," , Vol. 41, 159-183, 2003.
doi:10.2528/PIER02010807
References

1. Joannopoulos, J.D., R.D.Meade, and J.N.Winn, Photonics Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995.

2. Foresi, J.S., P.R.Villeneuv e, J.F errera, E.R.Tho en, G.Steinmey er, S.F an, J.D.Joannop oulos, L.C.Kimerling, H.I.Smith, and E.P .Ipp en, "Photonic-bandgap microcavities in optical waveguides," Nature, Vol. 390, No. 6656, 1997.

3. Painter, O., R.K.Lee, A.Sc herer, A.Y ariv, J.D.O'Brien, P.D.Dapkus, and I.Kim, "Two-dimensional photonic band-gap defect mode laser," Science, Vol. 284, No. 5421, 1819-1821, 1999.
doi:10.1126/science.284.5421.1819

4. Vuckovic, J., O.P ainter, X.Y ong, A.Y ariv, and A.Sc herer, "Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical microcavities," IEEE J. Quan. Electronics, Vol. 35, No. 8, 1168-1175, 1999.
doi:10.1109/3.777216

5. Benisty, H., C.Weisbuch, D.Labillo y, M.Rattier, C.J.M.Smith, T.F.Krauss, R.M.de-la-Rue, R.Houdre, U.Oesterle, C.Jouanin, and D.Cassagne, "Optical and confinement properties of two-dimensional photonic crystals," J. Lightwave Tech., Vol. 17, No. 11, 2063-2077, 1999.
doi:10.1109/50.802996

6. Scherer, A., O.P ainter, A.Husain, J.V uckovic, D.Dapkus, and J.O'Brien, "Photoniccrystalnanocavitylasers,''Int.J.HighSpeedElectr.Sys.,Vol.10,No.1,387-391,March2000.7.Weisbuch,C.,H.Benisty,andR.Houdre,Microcavities,photoniccrystalsandsemiconductors:Frombasicphysicstoapplicationsinlightemitters," Int. J. High Speed Electr. Sys., Vol. 10, No. 1, 339-354, 2000.

8. Lee, R.K., O.P ainter, B.Kitzk e, A.Sc herer, and A.Y ariv, "Emission properties of a defect cavity in a two-dimensional photonic bandgap crystal slab," J. Opt. Soc. Am. B, Vol. 17, No. 4, 629-633, 2000.

9. Painter, O., A.Husain, A.Sc herer, P.T.Lee, I.Kim, J.D.O'Brien, and P.D.Dapkus, "Lithographic tuning of a twodimensional photonic crystal laser array," IEEE Photonics Tech. Lett., Vol. 12, No. 9, 1126-1128, 2000.
doi:10.1109/68.874210

10. Smith, C.J.M., T.F.Krauss, H.Benist y, M.Rattier, C.W eisbuch, U.Oesterle, and R.Houdre, "Directionally dependent confinement in photonic-crystal microcavities," J. Opt. Soc. Am. B, Vol. 17, No. 12, 2043-2051, 2000.

11. Olivier, S., C.Smith, M.Rattier, H.Benist y, C.W eisbuch, T.Krauss, R.Houdre, and U.Oesterle, "Miniband transmission in a photonic crystal coupled-resonator optical waveguide," Opt. Lett., Vol. 26, No. 13, 1019-1021, 2001.

12. Sigalas, M.M., R.Bisw as, and K.M.Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microwave Opt. Tech. Lett., Vol. 13, No. 4, 205-209, 1996.
doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

13. Radisic, V., Y.Qian, R.Co ccioli, and T.Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644

14. Rumsey, I., M.Pik et-May, and P.K.Kelly, "Photonic bandgap structures used as filters in microstrip circuits," IEEE Microwave Guided Wave Lett., Vol. 8, No. 10, 336-338, 1998.
doi:10.1109/75.735413

15. Smith, G.S., M.P .Kesler, and J.G.Maloney, "Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field patterns, and input impedance," Microwave Opt. Tech. Lett., Vol. 21, No. 3, 191-196, 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<191::AID-MOP10>3.0.CO;2-L

16. Sigalas, M.M., R.Bisw as, K.M.Ho, W.Leung, G.T uttle, and D.D.Crouc h, "The effect of photonic crystals on dipole antennas," Electromagnetics, Vol. 19, No. 3, 291-303, 1999.

17. Fei, R.Y., P.M.Kuang, Q.Y ongxi, and T.Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

18. Coccioli, R., R.Y.F ei-Ran, P.M.Kuang, and T.Itoh, "AperturecoupledpatchantennaonUC-PBGsubstrate,''IEEETrans.MicrowaveTheoryTech.,Vol.47,No.11,2123-2130,November1999.19.Gonzalo,R.,P.De-Maagt,andM.Sorolla,Enhancedpatchantennaperformancebysuppressingsurfacewavesusingphotonicbandgapsubstrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
doi:10.1109/22.798009

20. Thevenot, M., C.Cheyp e, A.Reineix, and B.Jec ko, "Directive photonic-bandgap antennas," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2115-2122, 1999.
doi:10.1109/22.798007

21. Collardey, S., G.P oilasne, A.C.T arot, P.P ouliguen, C.T erret, and K.Mahdjoubi, "Metallic photonic bandgap propagation mode characterization," Microwave Opt. Tech. Lett., Vol. 28, No. 6, 434-440, 2001.
doi:10.1002/1098-2760(20010320)28:6<434::AID-MOP1064>3.0.CO;2-9

22. Serier, C., C.Cheyp e, R.Chan talat, M.Thev enot, T.Monediere, A.Reineix, and B.Jec ko, "1-D photonic bandgap resonator antenna," Microwave Opt. Tech. Lett., Vol. 29, No. 5, 312-315, 2001.
doi:10.1002/mop.1164

23. Sailing, H., M.P opov, M.Qiu, L.Zhigang, and C.Simo vski, "Explicit formulas for obtaining the radiation characteristics of an antenna based on a three-dimensional metallic photonic bandgap structure," Microwave Opt. Tech. Lett., Vol. 29, No. 6, 376-381, 2001.
doi:10.1002/mop.1183

24. Min, Q.and H.Sailing, "High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover," Microwave Opt. Tech. Lett., Vol. 30, No. 1, 41-44, 2001.
doi:10.1002/mop.1214

25. Reynolds, A.L., H.M.H.Chong, I.G.Tha yne, J.M.Arnold, and P.De-Maagt, "Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 7, 1254-1261, 2001.
doi:10.1109/22.932244

26. Hill, M.J., R.W.Ziolk owski, and J.P apapolymerou, "Simulated and measured results from a Duroid-based planar MBG cavity resonance filter," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 12, 528-530, 2000.
doi:10.1109/75.895092

27. Hill, M.J., R.W.Ziolk owski, and J.P apapolymerou, "A high- Q reconfigurable planar EBG cavity resonator," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 6, 255-257, 2001.
doi:10.1109/7260.928930

28. McGurn, A.R.and A.A.Maradudin, "Photonic band structures of two-and three-dimensional periodic metal or semiconductor arrays," Phys. Rev. B, Vol. 48, No. 12, 17576-17579, 1993.
doi:10.1103/PhysRevB.48.17576

29. Kuzmiak, V., A.A.Maradudin, and F.Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, No. 23, 16835-16844, 1994.
doi:10.1103/PhysRevB.50.16835

30. Sigalas, M.M., C.M.Souk oulis, C.T.Chan, and K.M.Ho, "Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials," Phys. Rev. B, Vol. 49, No. 16, 11080-11087, 1994.
doi:10.1103/PhysRevB.49.11080

31. Sigalas, M.M., C.T.Chan, K.M.Ho, and C.M.Souk oulis, "Metallic photonic band-gap materials," Phys. Rev. B, Vol. 52, No. 16, 11744-11751, 1995.
doi:10.1103/PhysRevB.52.11744

32. Sievenpiper, D.F., M.E.Sic kmiller, and E.Y ablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett., Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1103/PhysRevLett.76.2480

33. Scalora, M., M.J.Blo emer, A.S.P ethel, J.P .Do wling, C.M.Bo wden, and A.S.Mank a, "Transient, metallo-dielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys., Vol. 83, No. 5, 2377-2383, 1998.
doi:10.1063/1.366996

34. Sievenpiper, D.F., E.Y ablonovitch, J.N.Winn, S.F an, P.R.Villeneuv e, and J.D.Joannop oulos, "3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands," Physical-Review-Letters, Vol. 80, No. 13, 2829-3230, 1998.
doi:10.1103/PhysRevLett.80.2829

35. Bloemer, J.M.and M.Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett., Vol. 72, No. 14, 1676-1678, 1998.
doi:10.1063/1.121150

36. Contopanagos, H., N.G.Alexop oulos, and E.Y ablonovitch, "High-Q radio-frequency structures using one-dimensionally periodic metallic films," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 9, 1310-1312, 1998.
doi:10.1109/22.709476

37. Lie, M.L., Q.Z.Zhao, and Z.Xiangdong, "Transmission and absorption properties of two-dimensional metallic photonic-bandgap materials," Phys. Rev. B, Vol. 58, No. 23, 15589-15594, 1998.
doi:10.1103/PhysRevB.58.15589

38. Sigalas, M.M., R.Bisw as, K.M.Ho, C.M.Souk oulis, D.T urner, B.V asiliu, S.C.Kothari, and S.Lin, "Waveguide bends in three-dimensional layer-by-layer photonic bandgap materials," Microwave Opt. Tech. Lett., Vol. 23, No. 1, 56-59, 1999.
doi:10.1002/(SICI)1098-2760(19991005)23:1<56::AID-MOP17>3.0.CO;2-1