Vol. 37
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Higher Order Emission Model Study of BI-Sinusoidal Surface Brightness Temperatures
By
Progress In Electromagnetics Research, Vol. 37, 79-99, 2002
Abstract
Models for microwave thermal emission from a rough surface are currently of interest due to the goal of improved sea surface wind vector retrievals from polarimetric brightness temperature measurements. Models based on either a small slope approximation or on a physical optics approach have been proposed and have shown some success in matching observations. Both of these models involve series solutions, but computation of higher order terms typically is difficult, particularly for multi-scale sea surface models. Knowledge of higher order term contributions, however, would assist in understanding the limitations of the low-order methods applied in practice. In this paper, higher order results from both the small slope and physical optics methods are studied and compared for a simple bi-sinusoidal surface model (i.e. height profile = Asin(2πx/Px) sin(2πy/Py), where Px and Py are the surface periods in the x and y directions, respectively). Results show both methods to provide good predictions for moderate slope "large scale" surfaces (i.e. periods large compared to the observing electromagnetic wavelength) when shadowing and multiple scattering effects are negligible, while only the small slope theory correctly predicts emission from "small scale" profiles. The influence of both shadowing and multiple scattering effects is examined, and the "binary" shadowing behavior used in the physical optics method is suggested as a source of larger errors observed as shadowing effects increase.
Citation
Joel Johnson, "Higher Order Emission Model Study of BI-Sinusoidal Surface Brightness Temperatures," Progress In Electromagnetics Research, Vol. 37, 79-99, 2002.
doi:10.2528/PIER02013000
References

1. Stogryn, A., "The apparent temperature of the sea at microwave frequencies," IEEE Trans. Ant. Prop., Vol. 15, 278-286, 1967.
doi:10.1109/TAP.1967.1138900

2. Wu, S. T. and A. K. Fung, "A noncoherent model for microwave emissions and backscattering from the sea surface," J. of Geophys. Res., Vol. 77, 5917-5929, 1972.
doi:10.1029/JC077i030p05917

3. Wentz, F. J., "A two-scale scattering model for foam-free sea microwave brightness temperatures," J. Geophys. Res., Vol. 80, 3441-3446, 1975.
doi:10.1029/JC080i024p03441

4. Etkin, V. S., N. N. Vorsin, Yu. A. Kravtsov, V. G. Mirovskii, V. V. Nikitin, A. E. Popov, and I. A. Troitskii, "Critical phenomena with the thermal radio irradiation of a periodically uneven water surface," Izvestiya: Radiophysics and Quantum Electronics, Vol. 21, 316-318, 1978.
doi:10.1007/BF01031700

5. Tsang, L. and J. A. Kong, "Energy conservation for reflectivity and transmissivity at a very rough surface," J. Appl. Phys., Vol. 51, 673-680, 1980.
doi:10.1063/1.327325

6. Tsang, L. and J. A. Kong, "Asymptotic solution for the reflectivity of a very rough surface," J. Appl. Phys., Vol. 51, 681-690, 1980.
doi:10.1063/1.327324

7. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley, New York, 1985.

8. Irisov, V. G., I. G. Trokhimovskii, and V. S. Etkin, "Radiothermal spectroscopy of the sea-surface," Doklady Akademii Nauk SSSR, Vol. 297, 587-589, 1987.

9. Mikhailova, D. V. and I. M. Fuks, "Emissivity of a statistically rough surface including multiple reflections," Sov. J. Commun. Tech. Elec., Vol. 38, 128-136, 1993.

10. Yueh, S. H., R. Kwok, F. K. Li, S. V. Nghiem, and W. J. Wilson, "Polarimetric passive remote sensing of ocean wind vectors," Radio Science, Vol. 29, 799-814, 1994.
doi:10.1029/94RS00450

11. Gasiewski, A. J. and D. B. Kunkee, "Polarized microwave emission from water waves," Radio Science, Vol. 29, 1449-1465, 1994.
doi:10.1029/94RS01923

12. Kunkee, D. B. and A. J. Gasiewski, "Simulation of passive microwave wind direction signatures over the ocean using an asymmetric-wave geometrical optics model," Radio Science, Vol. 32, 59, 1997.
doi:10.1029/96RS02434

13. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Trans. Geosc. Remote Sens., Vol. 35, 1400-1418, 1997.
doi:10.1109/36.649793

14. Irisov, V. G., "Small-slope expansion for thermal and reflected radiation from a rough surface," Waves in Random Media, Vol. 7, 1-10, 1997.
doi:10.1088/0959-7174/7/1/001

15. Johnson, J. T., R. T. Shin, and J. A. Kong, "Scattering and thermal emission from a two dimensional periodic surface," Progress in Electromagnetic Research 15, Chapter 11, J. A. Kong (ed.), EMW Publishing, Cambridge, Jan. 1997.

16. Camps, A., I. Corbella, and J. M. Rius, "Extension of Kirchhoff method under stationary phase approximation to determination of polarimetric thermal emission from the sea," Electronics Letters, Vol. 34, 1501-1503, 1998.
doi:10.1049/el:19981055

17. Johnson, J. T., R. T. Shin, L. Tsang, K. Pak, and J. A. Kong, "A numerical study of ocean polarimetric thermal emission," IEEE Trans. Geosc. Remote Sens., Vol. 37, 8-20, 1999.
doi:10.1109/36.739089

18. Johnson, J. T. and M. Zhang, "Theoretical study of the small slope approximation for ocean polarimetric thermal emission," IEEE Trans. Geosc. Remote Sens., Vol. 37, 2305-2316, 1999.
doi:10.1109/36.789627

19. Li, Q., L. Tsang, J. C. Shi, and C. H. Chan, "Application of physics based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies," IEEE Trans. Geosc. Remote Sens., Vol. 38, 1635-1643, 2000.
doi:10.1109/36.851963

20. Irisov, V. G., "Azimuthal variations of the microwave radiation from a slightly non-Gaussian sea surface," Radio Science, Vol. 53, 65-82, 2000.
doi:10.1029/1999RS900104

21. Zhang, M. and J. T. Johnson, "Comparison of modeled and measured second azimuthal harmonics of ocean surface brightness temperatures," IEEE Trans. Geosc. Remote Sens., Vol. 39, 448-452, 2001.
doi:10.1109/36.905253

22. Johnson, J. T. and Y. Cai, "A theoretical study of sea surface up/down wind brightness temperature differences," to appear, IEEE Trans. Geosc. Remote Sens., Jan. 2002.

23. Johnson, J. T., "Comparison of the physical optics and small slope theories for polarimetric thermal emission from the sea surface," accepted by IEEE Trans. Geosc. Remote Sens., 2002.

24. Dzura, M. S., V. S. Etkin, A. S. Khrupin, M. N. Pospelov, and M. D. Raev, "Radiometers polarimeters: principles of design and applications for sea surface microwave emission polarimetry," IGARSS 92 Conference Proceedings, 1432-1434, 1992.

25. Wentz, F. J., "Measurement of oceanic wind vector using satellite microwave radiometers," IEEE Trans. Geosc. and Remote Sens., Vol. 30, 960-972, 1992.
doi:10.1109/36.175331

26. Yueh, S. H., W. J. Wilson, F. K. Li, S. V. Nghiem, and W. B. Ricketts, "Polarimetric measurements of sea surface brightness temperatures using an aircraft K-band radiometer," IEEE Trans. Geosc. Remote Sens., Vol. 33, 85-92, 1995.
doi:10.1109/36.368219

27. Gasster, S. D. and G. M. Flaming, "Overview of the conical microwave imager/sounder development for the NPOESS program," IGARSS’98 Conference Proceedings, Vol. 1, 268-271, 1998.

28. Yueh, S. H., W. J. Wilson, S. J. Dinardo, and F. K. Li, "Polarimetric microwave brightness signatures of ocean wind directions," IEEE Trans. Geosc. Remote Sens., Vol. 37, 949-959, 1999.
doi:10.1109/36.752213

29. Piepmeier, J. R. and A. J. Gasiewski, "High-resolution passive polarimetric microwave mapping of ocean surface wind vector fields," IEEE Trans. Geosc. Remote Sens., Vol. 39, 606-622, 2001.
doi:10.1109/36.911118

30. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Ant. Prop., Vol. 25, 104-111, 1977.
doi:10.1109/TAP.1977.1141539

31. Yueh, S. H., R. Kwok, and S. V. Nghiem, "Polarimetric scattering and emission properties of targets with reflection symmetry," Radio Science, Vol. 29, 1409-1420, 1994.
doi:10.1029/94RS02228

32. Johnson, J. T., "Third order small perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 16, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720

33. Johnson, J. T., "Erratum: Third order small perturbation method for scattering from dielectric rough surfaces," J. Opt. Soc. Am. A, Vol. 17, 1685, 2000.
doi:10.1364/JOSAA.17.001685

34. Bruno, O. P. and F. Reitich, "Numerical solution of diffraction problems: a method of variation of boundaries: III. Doubly periodic gratings," J. Opt. Soc. Am. A, Vol. 10, 2551-2562, 1993.
doi:10.1364/JOSAA.10.002551

35. Maui High Performance Computing Center World Wide Web Site, on the World Wide Web at www.mhpcc.edu.

36. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd edition, Cambridge Univ. Press, New York, 1992.

37. Barrick, D. E., "Near grazing illumination and shadowing of rough surfaces," Radio Science, Vol. 30, 563-580, 1995.
doi:10.1029/95RS00835

38. Holliday, D., "Resolution of a controversy surrounding the Kirchhoff approach and the small perturbation method in rough-surface scattering theory," IEEE Trans. Ant. Prop., Vol. 35, 120-122, 1987.
doi:10.1109/TAP.1987.1143978

39. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.

40. Elfouhaily, T., D. R. Thompson, D. Vandemark, and B. Chapron, "A new bistatic model for electromagnetic scattering from perfectly conducting random surfaces," Waves in Random Media, Vol. 9, 281-294, 1999.
doi:10.1088/0959-7174/9/3/301

41. Garcia, N., V. Celli, N. Hill, and N. Cabrera, "Ill conditioned matrices in the scattering of waves from hard corrugated surfaces," Phys. Rev. B, Vol. 18, 5184-5189, 1978.
doi:10.1103/PhysRevB.18.5184

42. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dogarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, Scalapack Users’ Guide, SIAM Publications, Philadelphia, 1997.
doi:10.1137/1.9780898719642