1. Draft IEC 61000-4-21, 2001, 2001, 61000-4, Electromagnetic Compatibility (EMC) Part 4: Testing and Measurement Techniques.
2. Hill, D. A., "Electronic mode stirring for reverberation chambers," IEEE Trans.Ele ctromagn.Comat., Vol. 36, No. 4, 294-299, 1994.
doi:10.1109/15.328858 Google Scholar
3. Petirsch, M. and A. J. Schwab, "In vestigation of the field uniformity of a mode-stirred chamber using diffusors based on acoustic theory," IEEE Trans.Ele ctromagn.Compat., Vol. 41, 446-451, 1999. Google Scholar
4. Perini, J. and L. S. Cohen, "An alternative way to stir the fields in a mode stirred chamber," IEEE EMC Symposium, 633-637, 2000. Google Scholar
5. Godfrey, E. A., "Effects of corrugated walls on the field uniformity of reverberation chambers at low frequencies," IEEE EMC Symposium, 23-28, 1999. Google Scholar
6. Huang, Y. and D. J. Edwards, "An investigation of the electromagnetic field inside a moving wall mode-stirred chamber," IEE Conference on EMC, 115-119, 1992. Google Scholar
7. Lefering, F., "High field strength in a large volume: the intrinsic reverberation chamber," IEEE EMC Symposium, 24-27, 1998. Google Scholar
8. Leferink, F., J. C. Boudenot, and W. Etten, "Exp erimental results obtained in the vibrating intrinsic reverberation chamber," IEEE EMC Symposium, 639-644, 2000. Google Scholar
9. Leferink, F. and W. Etten, "Generating an EMC test field using a vibrating intrinsic reverberation chamber," EMC Society Newsletter, 2001. Google Scholar
10. Taflove, A., Computational Electrodynamics, Artech House.
doi:10.1109/TAP.1966.1138693
11. Yee, K., "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Trans. Ant. Prop., Vol. 14, No. 3, 302-307, 1966. Google Scholar
12. Bai, L., L. Wang, B. Wang, and J. Song, "Rev erberation chamber modeling using FDTD," IEEE EMC Symposium, 7-11, 1999. Google Scholar
13. Harima, K., "FDTD analysis of electromagnetic fields in a reverberation chamber," IEICE Trans.Commun., Vol. E81-B, 81, 1998. Google Scholar
14. Chung, S., J. Rhee, H. Rhee, and K. Lee, "Field uniformity characteristics of an asymmetric structure reverberation chamber by FDTD method," IEEE EMC Symposium, 2001. Google Scholar
15. Zhang, D., E. Li, and W. Yuang, "Study of independent sampling points in a reverberation chamber with two stirrers," IEEE EMC Symposium, 2001. Google Scholar
16. Rosengren, K., P . Kildal, C. Carlsson, and J. Carlsson, "Characterization of antennas for mobile and wireless terminals by using reverberation chambers: Improved accuracy by platform stirring," IEEE AP-S Symposium, 2001. Google Scholar
17. Hoijer, M., A. Andersson., O. Lunden, and M. Backstrom, "Numerical simulations as a tool for optimizing the geometrical design of reverberation chambers," IEEE EMC Symposium, 2000.
doi:10.1080/027263402753427646 Google Scholar
18. Kouveliotis, N. K., P . T. Trakadas, A. I. Stefanogiannis, and C. N. Capsalis, "Field prediction describing scattering by a one dimensional smooth random rough surface," Electromagnetics, Vol. 22, No. 1, 27-35, 2002. Google Scholar
19. Boonzaaier, J. J. and C. W. I. Pistorius, "Thin wire dipoles A finite-difference time-domain approach," Electronics Letters, Vol. 26, No. 22, 1891-1892, 1990. Google Scholar
20. Haykin, S., Communications Systems, Wiley, 1983.
21. Svetanoff, D., J. Weibler, R. Cooney, M. Squire, S. Zielinski, M. Hatfield, and M. Slocum, "Dev elopment of high performance tuners for mode-stirring and mode-tuning applications," IEEE EMC Symposium, 29-34, 1999.
doi:10.1109/15.99120 Google Scholar
22. Kostas, J. G. and B. Boverie, "Statistical model for a mode-stirred chamber," IEEE Trans.Ele ctromagn.Comp at., Vol. 33, 366-370, 1991.
doi:10.1109/15.709418 Google Scholar
23. Hill, D. A., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans.Ele ctromagn.Comp at., Vol. 40, 209-217, 1998. Google Scholar