Vol. 38
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Surface Green's Function of the Helmholtz Equation in Spherical Coordinates
By
, Vol. 38, 47-95, 2002
Abstract
The surface Green's function belonging to the non-spherical exterior boundary value problem of Helmholtz's equation in spherical coordinates is derived. This is performed in two ways, first by applying the Separation of Variables method, and, second, by using the Method of Lines as a special Finite-Difference technique. With this Green's function we are able to resolve some contradictions concerning conceptual aspects of the Separation of Variables method, the Finite-Difference methods, and the Boundary Integral Equation methods which have been developed for rigorously solving non-separable boundary value problems. The necessary mathematical background, the relation to Waterman's T matrix, and simplifications due to certain symmetry properties of the boundary surface will be discussed. In this paper we focus on the scalar problem. The extension to the vector case for electromagnetic wave scattering is in preparation and will be published later.
Citation
F. Michael Kahnert, Adrian Doicu, and Jochen Wauer, "Surface Green's Function of the Helmholtz Equation in Spherical Coordinates," , Vol. 38, 47-95, 2002.
doi:10.2528/PIER02091902
References

1. Rother, T. and K. Schmidt, "The discretized Mie-formalism for electromagnetic scattering," Progress in Electromagnetic Research, J. A. Kong (ed.), 91–183, EMW Publishing, Cambridge, MA, 1997.

2. Taflove, A., Computational Electrodynamics — The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.

3. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Songs, New York, 1995.

4. Rother, T., "General aspects of solving Helmholtz’s equation underlying eigenvalue and scattering problems in electromagnetic wave theory," J. Electromagn. Waves Appl., Vol. 13, 867-888, 1999.
doi:10.1163/156939399X00330

5. Lippmann, B. A., "Note on the theory of gratings," J. Opt. Soc. Amer., Vol. 43, 408, 1953.
doi:10.1364/JOSA.43.000408

6. Millar, R. F., "The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers," Radio Sci., Vol. 8, 785-796, 1973.
doi:10.1029/RS008i008p00785

7. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, Inc., 1953.

8. Schulz, F. M., K. Stamnes, and J. J. Stamnes, "Point group symmetries in electromagnetic scattering," J. Opt. Soc. Am. A, Vol. 16, 853-865, 1999.
doi:10.1364/JOSAA.16.000853

9. Zagorodnov, I. A. and R. P. Tarasov, "Finite groups in numerical solution of electromagnetic scattering problems on non-spherical particles," Light Scattering by Nonspherical Particles: Halifax Contributions, 99-102, Army Research Laboratory, Adelphi, MD, 2000.

10. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Application of the extended boundary condition method to homogeneous particles with point group symmetries," Appl. Opt., Vol. 40, 3110-3123, 2001.
doi:10.1364/AO.40.003110

11. Rother, T., K. Schmidt, and S. Havemann, "Light scattering on hexagonal ice columns," J. Opt. Soc. Am. A, Vol. 18, 2512-2517, 2001.
doi:10.1364/JOSAA.18.002512

12. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-812, 1965.
doi:10.1109/PROC.1965.4058

13. Kleinman, R. E., G. F. Roach, and S. E. G. Strom, "The null field method and modified Green function," Proc. R. Soc. Lond. A, Vol. 394, 121-136, 1984.
doi:10.1098/rspa.1984.0072

14. Ramm, A. G., Scattering by Obstacles, D. Reidel, Dordrecht, 1986.
doi:10.1007/978-94-009-4544-9

15. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, 1993.

16. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, New York, 1949.

17. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, 825-839, 1971.
doi:10.1103/PhysRevD.3.825

18. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer Verlag, Berlin, 1992.
doi:10.1007/978-3-662-02835-3

19. Doicu, A., Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources, Academic Press, New York, 2000.

20. Dallas, A. G., "On the convergence and numerical stability of the second waterman scheme for approximation of the acoustic field scattered by a hard object,", Technical Report, No. 2000-7, 1–35, Dept. of Mathematical Sciences, Univ. of Deleware, 2000.

21. Schmidt, K., T. Rother, and J. Wauer, "The equivalence of applying the extended boundary condition and the continuity conditions for solving electromagnetic scattering problems," Optics Comm., Vol. 150, 1-4, 1998.
doi:10.1016/S0030-4018(98)00113-8

22. Pregla, R. and W. Pascher, "The methods of lines," Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh (ed.), 381–446, Wiley, New York, 1989.

23. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.

24. Pregla, R., "About the nature of the method of lines," Arch. Elektr. Bertragungstech., Vol. 41, 370-386, 1987.

25. Pregla, R., "Higher order approximations for the difference operator in the method of lines," IEEE Microwave and Guided Wave Letters, Vol. 5, 53-55, 1995.
doi:10.1109/75.342150

26. Dreher, A. and T. Rother, "New aspects of the method of lines," IEEE Microwave and Guided Wave Letters, Vol. 5, 408-410, 1995.
doi:10.1109/75.473526

27. Bishop, D. M., Group Theory and Chemistry, Dover Publications, Mineola, 1993.

28. Zakharov, E. V., S. I. Safronov, and R. P. Tarasov, "Finite-order abelian groups in the numerical analysis of linear boundary-value problems of potential theory," Comput. Maths. Math. Phys., Vol. 32, 34-50, 1992.

29. Zakharov, E. V., S. I. Safronov, and R. P. Tarasov, "Finite group algebras in iterational methods of solving boundary-value problems of potential theory," Comput. Maths. Math. Phys., Vol. 33, 907-917, 1993.

30. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?," J. Opt. Soc. Am. A, Vol. 19, 521-531, 2002.
doi:10.1364/JOSAA.19.000521

31. Mishchenko, M. I., "Light scattering by randomly oriented axially symmetric particles," J. Opt. Soc. Am. A., Vol. 8, 871-882, 1991.
doi:10.1364/JOSAA.8.000871

32. Khlebtsov, N. G., "Orientational averaging of light-scattering observables in the T-matrix approach," Appl. Opt., Vol. 31, 5359-5365, 1992.
doi:10.1364/AO.31.005359

33. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A, Vol. 13, 2266-2278, 1996.
doi:10.1364/JOSAA.13.002266

34. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations," J. Quant. Spectrosc. Radiat. Transfer, Vol. 74, 167-182, 2002.
doi:10.1016/S0022-4073(01)00194-7

35. Schulz, F. M., K. Stamnes, and J. J. Stamnes, "Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the T-matrix computed in spheroidal coordinates," Appl. Opt., Vol. 37, 7875-7896, 1998.
doi:10.1364/AO.37.007875

36. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Surface-integral formulation for electromagnetic scattering in spheroidal coordinates," J. Quant. Spectrosc. Radiat. Transfer, in press.