1. Rother, T. and K. Schmidt, "The discretized Mie-formalism for electromagnetic scattering," Progress in Electromagnetic Research, J. A. Kong (ed.), 91–183, EMW Publishing, Cambridge, MA, 1997. Google Scholar
2. Taflove, A., Computational Electrodynamics — The Finite-Difference Time-Domain Method, Artech House, Boston, 1995.
3. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Songs, New York, 1995.
4. Rother, T., "General aspects of solving Helmholtz’s equation underlying eigenvalue and scattering problems in electromagnetic wave theory," J. Electromagn. Waves Appl., Vol. 13, 867-888, 1999.
doi:10.1163/156939399X00330 Google Scholar
5. Lippmann, B. A., "Note on the theory of gratings," J. Opt. Soc. Amer., Vol. 43, 408, 1953.
doi:10.1364/JOSA.43.000408 Google Scholar
6. Millar, R. F., "The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers," Radio Sci., Vol. 8, 785-796, 1973.
doi:10.1029/RS008i008p00785 Google Scholar
7. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Company, Inc., 1953.
8. Schulz, F. M., K. Stamnes, and J. J. Stamnes, "Point group symmetries in electromagnetic scattering," J. Opt. Soc. Am. A, Vol. 16, 853-865, 1999.
doi:10.1364/JOSAA.16.000853 Google Scholar
9. Zagorodnov, I. A. and R. P. Tarasov, "Finite groups in numerical solution of electromagnetic scattering problems on non-spherical particles," Light Scattering by Nonspherical Particles: Halifax Contributions, 99-102, Army Research Laboratory, Adelphi, MD, 2000. Google Scholar
10. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Application of the extended boundary condition method to homogeneous particles with point group symmetries," Appl. Opt., Vol. 40, 3110-3123, 2001.
doi:10.1364/AO.40.003110 Google Scholar
11. Rother, T., K. Schmidt, and S. Havemann, "Light scattering on hexagonal ice columns," J. Opt. Soc. Am. A, Vol. 18, 2512-2517, 2001.
doi:10.1364/JOSAA.18.002512 Google Scholar
12. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-812, 1965.
doi:10.1109/PROC.1965.4058 Google Scholar
13. Kleinman, R. E., G. F. Roach, and S. E. G. Strom, "The null field method and modified Green function," Proc. R. Soc. Lond. A, Vol. 394, 121-136, 1984.
doi:10.1098/rspa.1984.0072 Google Scholar
14. Ramm, A. G., Scattering by Obstacles, D. Reidel, Dordrecht, 1986.
doi:10.1007/978-94-009-4544-9
15. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, 1993.
16. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, New York, 1949.
17. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, 825-839, 1971.
doi:10.1103/PhysRevD.3.825 Google Scholar
18. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer Verlag, Berlin, 1992.
doi:10.1007/978-3-662-02835-3
19. Doicu, A., Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources, Academic Press, New York, 2000.
20. Dallas, A. G., "On the convergence and numerical stability of the second waterman scheme for approximation of the acoustic field scattered by a hard object,", Technical Report, No. 2000-7, 1–35, Dept. of Mathematical Sciences, Univ. of Deleware, 2000. Google Scholar
21. Schmidt, K., T. Rother, and J. Wauer, "The equivalence of applying the extended boundary condition and the continuity conditions for solving electromagnetic scattering problems," Optics Comm., Vol. 150, 1-4, 1998.
doi:10.1016/S0030-4018(98)00113-8 Google Scholar
22. Pregla, R. and W. Pascher, "The methods of lines," Numerical Techniques for Microwave and Millimeter Wave Passive Structures, T. Itoh (ed.), 381–446, Wiley, New York, 1989. Google Scholar
23. Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University Press, Oxford, 1965.
24. Pregla, R., "About the nature of the method of lines," Arch. Elektr. Bertragungstech., Vol. 41, 370-386, 1987. Google Scholar
25. Pregla, R., "Higher order approximations for the difference operator in the method of lines," IEEE Microwave and Guided Wave Letters, Vol. 5, 53-55, 1995.
doi:10.1109/75.342150 Google Scholar
26. Dreher, A. and T. Rother, "New aspects of the method of lines," IEEE Microwave and Guided Wave Letters, Vol. 5, 408-410, 1995.
doi:10.1109/75.473526 Google Scholar
27. Bishop, D. M., Group Theory and Chemistry, Dover Publications, Mineola, 1993.
28. Zakharov, E. V., S. I. Safronov, and R. P. Tarasov, "Finite-order abelian groups in the numerical analysis of linear boundary-value problems of potential theory," Comput. Maths. Math. Phys., Vol. 32, 34-50, 1992. Google Scholar
29. Zakharov, E. V., S. I. Safronov, and R. P. Tarasov, "Finite group algebras in iterational methods of solving boundary-value problems of potential theory," Comput. Maths. Math. Phys., Vol. 33, 907-917, 1993. Google Scholar
30. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Can simple particle shapes be used to model scalar optical properties of an ensemble of wavelength-sized particles with complex shapes?," J. Opt. Soc. Am. A, Vol. 19, 521-531, 2002.
doi:10.1364/JOSAA.19.000521 Google Scholar
31. Mishchenko, M. I., "Light scattering by randomly oriented axially symmetric particles," J. Opt. Soc. Am. A., Vol. 8, 871-882, 1991.
doi:10.1364/JOSAA.8.000871 Google Scholar
32. Khlebtsov, N. G., "Orientational averaging of light-scattering observables in the T-matrix approach," Appl. Opt., Vol. 31, 5359-5365, 1992.
doi:10.1364/AO.31.005359 Google Scholar
33. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A, Vol. 13, 2266-2278, 1996.
doi:10.1364/JOSAA.13.002266 Google Scholar
34. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Using simple particle shapes to model the Stokes scattering matrix of ensembles of wavelength-sized particles with complex shapes: possibilities and limitations," J. Quant. Spectrosc. Radiat. Transfer, Vol. 74, 167-182, 2002.
doi:10.1016/S0022-4073(01)00194-7 Google Scholar
35. Schulz, F. M., K. Stamnes, and J. J. Stamnes, "Scattering of electromagnetic waves by spheroidal particles: A novel approach exploiting the T-matrix computed in spheroidal coordinates," Appl. Opt., Vol. 37, 7875-7896, 1998.
doi:10.1364/AO.37.007875 Google Scholar
36. Kahnert, F. M., J. J. Stamnes, and K. Stamnes, "Surface-integral formulation for electromagnetic scattering in spheroidal coordinates," J. Quant. Spectrosc. Radiat. Transfer, in press. Google Scholar