1. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Letters, Vol. 5D, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Letters, Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals. Molding the Flow of Light, Princeton University Press, 1995., 1995.
4. D'Orazio, A., M. De Sario, V. Petruzzelli, and F. Prudenzano, "Numerical modeling of photonic band gap waveguiding structures," Recent Research Developments in Optics, 2002. Google Scholar
5. Sakoda, K., "Enhanced light amplification due to groupvelocity anomaly peculiar to two-and three-dimensional photonic crystals," Optics Express, Vol. 4, No. 5, 167-176, 1999. Google Scholar
6. Dowling, J. P., M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys., Vol. 75, 1896-1899, 1994.
doi:10.1063/1.356336 Google Scholar
7. Ohtaka, K., "Density of states of slab photonic crystals and the laser oscillation in photonic crystals," Journal of Lightwave Technology, Vol. 17, No. 11, 2161-2169, 1999.
doi:10.1109/50.803007 Google Scholar
8. Vlasov, Yu. A., K. Luterova, I. Pelant, B. Honerlage, and V. N. Astratov, "Enhancement of optical gain semiconductors embedded in three-dimensional photonic crystals," Appl. Phys. Lett., Vol. 71, No. 12, 1616-1618, 1997.
doi:10.1063/1.119995 Google Scholar
9. Kopp, V. I., B. Fan, and H. K. M. Vithana, "and A. Z. Genack Lowthreshold lasing at the edge of a photonic stop band in cholesteric liquid crystal," Opt. Letters, Vol. 23 No. 21, No. Vol. 23 21, 1707-1709, 1998. Google Scholar
10. Villeneuve, P. R., S. Fan, and J. D. Joannoupoulos, "Microcavities in photonic crystals: mode symmetry, tunability and coupling efficiency," Phys. Rev. B, Vol. 54, 7837-7842, 1996.
doi:10.1103/PhysRevB.54.7837 Google Scholar
11. Kuzmiak, V. and A. A. Maradudin, "Localized defect modes in a two-dimensional triangular photonic crystal," Phys. Rev. B, Vol. 57, 15242-15249, 1998.
doi:10.1103/PhysRevB.57.15242 Google Scholar
12. Pottier, P., C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and J. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic band gap cavities on III-V suspended membranes," J. Lightwave Technology, Vol. 17, 2058-2062, 1999.
doi:10.1109/50.802995 Google Scholar
13. Qiu, M. and S. He, "Numerical method for computing defect modes in two-dimensional photonic crystals with dielectric or metallic inclusions," Physics Review B, Vol. 61, 12871-12876, 2000.
doi:10.1103/PhysRevB.61.12871 Google Scholar
14. Ripin, D. J., K. Y. Lim, G. S. Petrich, P. R. Villeneuve, S. Fan, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Kolodziejski, "One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides," J. Lightwave Technology, Vol. 17, 2152-2160, 1999.
doi:10.1109/50.803006 Google Scholar
15. Villeneuve, P. R., S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability and coupling efficiency," Physics Review B, Vol. 54, 7837-7842, 1996.
doi:10.1103/PhysRevB.54.7837 Google Scholar
16. Smith, D. R., R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, "Photonic band structure and defects in one and two dimensions," J. Optical Society of America B, Vol. 10, 314-321, 1993. Google Scholar
17. Inoue, K., M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys., Vol. 38, No. 2B, 157, 1999.
doi:10.1143/JJAP.38.L157 Google Scholar
18. Imada, M., S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surfaceemitting laser withtriangular-lattice photonic crystal structure," Applied Phys. Letters, Vol. 75, No. 3, 316-318, 1999.
doi:10.1063/1.124361 Google Scholar
19. Taflove, A., Advances in Computational Electrodynamics — The Finite-Difference Time-Domain Method, ArtechHouse, 1998.
20. Yariv, A., Quantum Electronics, Wiley, 1967.
21. Nojima, S., "Enhancement of optical gain in two-dimensional photonic crystals with active lattice points," Jpn. J. Applied Physics 2, Vol. 37, 565, 1998.
doi:10.1143/JJAP.37.L565 Google Scholar
22. Bell, P. M., J. B. Pendry, L. Martin Moreno, and A. J. Ward, Comput. Phys. Commun., Vol. 85, 306, Vol. 85, 1995., 1995.