Vol. 40
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Physical Spline Finite Element (PSFEM) Solutions to One Dimensional Electromagnetic Problems
By
, Vol. 40, 271-294, 2003
Abstract
In this paper, a new computational technique is presented for the first time. In this method, physical differential equations are incorporatedin to interpolations of basic element in finite element methods. This is named physical spline finite element method (PSFEM). Theoretically, the physical spline interpolation introduces many new features. First, physical equations can be usedin the interpolations to make the interpolations problem-associated. The algorithm converges much faster than any general interpolation while keeping the simplicity of the first order Lagrange interpolation. Second, the concept of basis functions may need to be re-examined. Thirdly, basis functions could be complex without simple geometric explanations. The applications to typical one-dimensional electromagnetic problems show the great improvements of the newly developed PSFEM on accuracy, convergence andstabilit y. It can be extendedto other applications. Extension to two- andthree-d imensional problems is briefly discussed in the final section.
Citation
, "Physical Spline Finite Element (PSFEM) Solutions to One Dimensional Electromagnetic Problems," , Vol. 40, 271-294, 2003.
doi:10.2528/PIER02121801
http://www.jpier.org/PIER/pier.php?paper=0212181
References

1. Zienkiewicz, O. C., The Finite Element Method in Structural and Continuum Mechanics, McGraw-Hill, New York, 1967.

2. Kwon, Y. W. and H. Bang, The Finite Element Method Using MATLAB, CRC Press, Boca Raton, 1997.

3. Silvester, P. P., Finite Elements for Electrical Engineers, Cambridge University Press, New York, 1996.
doi:10.1017/CBO9781139170611

4. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

5. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, IEEE Press, New York, 1998.
doi:10.1109/9780470544655

6. Silvester, P. P. and G. Pelosi, Finite Elements for Wave Electromagnetics: Method and Techniques, IEEE Press, New York, 1994.

7. Babuska, I. and M. Suri, "The p andhp versions of the finite element methods, basic principles and properties," SIAM Rev., Vol. 36, 578-632, 1994.
doi:10.1137/1036141

8. Melenk, J., K. Gerdes, and C. Schwab, "Fully discrete hp-finite elements: fast quadrature," Compu. Methods Appli. Mech. Engrg., Vol. 190, 4339-4364, October 2001.
doi:10.1016/S0045-7825(00)00322-4

9. Noor, A. K. and W. D. Pilkey, State-of the Art Surveys on Finite Element Technology, American Society of Mechanical Engineers, New York, 1983.

10. Cheney, W. and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole Publishing Company, Pacific Grove, 1994.

11. Castillo, L. E. G., T. K. Sarkar, and M. S. Palma, "An efficient finite element methodemplo ying wavelet type basis functions (waveguide analysis)," COMPEL — The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 13, 278-292, May 1994.

12. Mitchell, A. R., "Variational principles andthe finite element method," J. Inst. Maths. Applications, Vol. 9, 378-389, 1972.
doi:10.1093/imamat/9.3.378

13. Benjeddou, A., "Vibrations of complex shells of revolution using B-spline finite elements," Computer & Structures, Vol. 74, 429-440, April 2000.
doi:10.1016/S0045-7949(99)00060-7

14. Ahlberg, J. H., E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967.

15. Prenter, P. M., Splines and Variational Methods, Wiley, New York, 1975.

16. de Boor, C., A Practical Guide to Spline, Springer-Verlag, New York, 1978.
doi:10.1007/978-1-4612-6333-3

17. Liang, X., B. Jian, and G. Ni, "The B-spline finite element methodin electromagnetic fieldn umerical analysis," IEEE Trans. on Magnetics, Vol. 23, 2641-2643, Sept. 1987.
doi:10.1109/TMAG.1987.1065516

18. Legault, S. R., T. B. A. Senior, and J. L. Volakis, "Design of planar absorbing layers for domain truncation in FEM applications," Electromagnetics, Vol. 16, 451-464, July 1996.
doi:10.1080/02726349608908490

19. Liang, X., B. Jian, and G. Ni, "B-spline finite element method applied to axi-symmetrical and nonlinear field problems," IEEE Trans. on Magnetics, Vol. 24, 27-30, Jan. 1988.
doi:10.1109/20.43850

20. Press, W. H. and S. A. Tewkdsky, Numerical Recipes in C, The Art of Scientific Computing, Cambridge University Press, New York, 1992.

21. Allen, M. B. and E. L. Isaacson, Numerical Analysis for Applied Science, Wiley, 1997.
doi:10.1002/9781118033128

22. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Teinhold, New York, 1990.

23. Zhou, X., "Physical spline finite element methodin microwave engineering,", Ph.D. thesis, Arizona State University, May 2001.

24. Zhou, X. and G. Pan, "Application of physical spline FEM to waveguide problems," PIERS 2000 Progress in Electromagnetics Research Symposium, 77, Boston, USA, July 2002.