Vol. 42
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
Analysis of BI-Anisotropic PBG Structure Using Plane Wave Expansion Method
By
, Vol. 42, 233-246, 2003
Abstract
An algebraic eigenvalue problem for analyzing the propagation characteristics of electromagnetic waves inside the PBG Structure consisting of complex medium is established by using Bloch theorem and plane wave expansion. Two eigen-solvers are employed. One is matrix-based and another is iterative. Calculated results show that both methods are effective for 2-D PBG structure, but the iterative eigen-solver is more attractive in both CPU-time and memory requirement. A sample of 2-D PBG structure, with Chiral medium as host and air cylinders arranged in triangular lattice as inclusion, is analyzed using both methods. It is found that the introduction of chirality increases the band gap width significantly.
Citation
"Analysis of BI-Anisotropic PBG Structure Using Plane Wave Expansion Method," , Vol. 42, 233-246, 2003.
doi:10.2528/PIER03012101
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 2, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059        Google Scholar

2. John, S., "Strong localization of photons in certain disordered dielectric superlattice," Phys. Rev. Lett., Vol. 58, 1987.
doi:10.1103/PhysRevLett.58.2486        Google Scholar

3. Yablonovitch, E. and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case," Phys. Rev. Lett., Vol. 63, 1989.        Google Scholar

4. Leung, K. M. and Y. F. Liu, "Full vector wave calculation of photonic band structures in face-centered-curbic dielectric media," Phys. Rev. Lett., Vol. 65, No. 21, 2646-2649, 1990.
doi:10.1103/PhysRevLett.65.2646        Google Scholar

5. Satpathy, S. and Z. Zhang, "Theory of photon bands in threedimensional periodic dielectric structures," Phys. Rev. Lett., Vol. 64, No. 111239-1242, 111239-1242, 1990.        Google Scholar

6. Zhang, Z. and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys. Rev. Lett., Vol. 65 No. 21, No. Vol. 65 21, 2650-2653, 1990.
doi:10.1103/PhysRevLett.65.2650        Google Scholar

7. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, No. 25, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152        Google Scholar

8. Sözuer, H. S. and J. W. Haus, "Photonic bands: Convergence problems with the plane-wave method," Phys. Rev. B, Vol. 45, No. 24, 13962-13972, 1992.
doi:10.1103/PhysRevB.45.13962        Google Scholar

9. Kweon, G. and N. M. Lawandy, "Quantum electrodynamics in photonic crystals," Optics Communications, Vol. 118, 388-411, 1995.
doi:10.1016/0030-4018(95)00069-K        Google Scholar

10. Plihal, M., A. Shambrook, A. A. Maradudin, and P. Sheng, "Twodimensional photonic band structures," Opt. Commun., Vol. 80, No. 3, 199-204, 1991.
doi:10.1016/0030-4018(91)90250-H        Google Scholar

11. Plihal, M. and A. A. Maradudin, "Photonic band structure of two-dimensional systems: The triangular lattice," Phys. Rev. B, Vol. 44, No. 16, 8565-8571, 1991.
doi:10.1103/PhysRevB.44.8565        Google Scholar

12. McCall, S. L., P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett., Vol. 67, No. 15, 2017-2020, 1991.
doi:10.1103/PhysRevLett.67.2017        Google Scholar

13. Villeneuve, P. R., "P. R. and M. Piche Photonic band gaps in twodimensional square and hexagonal lattices," Phys. Rev. B, Vol. 46, No. 8, 4969-4972, 1992.
doi:10.1103/PhysRevB.46.4969        Google Scholar

14. Villeneuve, P. R. and M. Piche, "Photonic band gaps in two dimensional square lattices: Square and circular rods," Phys. Rev. B, Vol. 46, No. 8, 4973-4975, 1992.
doi:10.1103/PhysRevB.46.4973        Google Scholar

15. Padjen, R., J. M. Gerard and J. Y. Marzin, "Analysis of the filling pattern dependence of the photonic bandgap for two-dimensional systems," Journal of Modern Optics, Vol. 41, No. 2, 295-310, 1994.        Google Scholar

16. Maradudin, A. A. and A. R. McGurn, "Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium," Journal of Modern Optics, Vol. 41, No. 2, 275-284, 1994.        Google Scholar

17. Villeneuve, P. R., "P. R. and M. Piche Photonic band gaps of transverseelectric modes in two-dimensionally periodic media," J. Opt. Soc. Am. A, Vol. 8, No. 8, 1296-1305, 1991.        Google Scholar

18. Anderson, C. M. and K. P. Giapis, "Larger two-dimensional photonic band gaps," Phys. Rev. Lett., Vol. 77, No. 14, 2949-2952, 1996.
doi:10.1103/PhysRevLett.77.2949        Google Scholar

19. Qiu, M. and S. He, "Large complete band gap in two-dimensional photonic crystals with elliptic air holes," Phys. Rev. B, Vol. 60, No. 15, 10610-10612, 1999.
doi:10.1103/PhysRevB.60.10610        Google Scholar

20. Li, Z.-Y., B.-Y. Gu, and G.-Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, No. 12, 2574-2577, 1998.
doi:10.1103/PhysRevLett.81.2574        Google Scholar

21. Yang, H.-Y. D., "Surface-wave elimination in integrated circuit structures with artificial periodic materials," Electromagnetics, Vol. 20, 125-130, 2000.
doi:10.1080/027263400308311        Google Scholar

22. Fan, S., P. R. Villeneuve, and J. D. Joannopoulos, "Large omnidirectional band gaps in metallodielectric photonic crystals," Phys. Rev. B, Vol. 54, No. 16, 11245-11251, 1996.
doi:10.1103/PhysRevB.54.11245        Google Scholar

23. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Phys. Rev. B, Vol. ibid 55, 15942-8437, 1997.
doi:10.1103/PhysRevB.55.15942        Google Scholar

24. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001.        Google Scholar

25. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton, 1995.

26. Johnson, S. G. and J. D. Joannopoulos, The MIT Photonic-Bands Package, http://ab-initio. mit.edu/mpb/..

27. Shumpert, J. D., W. J. Chappell, and L. P. B. Katehi, "Parallel-plate mode reduction in conductor-backed slots using electromagnetic bandgap substrates," IEEE Trans. on MTT, Vol. 47, No. 11, 2099-2104, 1999.
doi:10.1109/22.798005        Google Scholar

28. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, No. 9, 2526-2538, 1994.        Google Scholar

29. Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, "A program for calculating photonic band structures and transmission coefficients of complex structures," Comput. Phys. Comm., Vol. 85, 306-322, 1995.
doi:10.1016/0010-4655(94)00131-K        Google Scholar

30. Pendry, J. B., "Photonic band structures," Jour. of Modern Optics, Vol. 41, No. 2, 209-229, 1994.        Google Scholar

31. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, 2000.

32. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Chapter 8, 1976.

33. Lindell, I. V., Advanced Field Theory, 138 ss., 2001.

34. Elsherbeni, A. Z., "Comparative study of two-dimensional multiple scattering techniques," Radio Science, Vol. 29, No. 4, 1994.
doi:10.1029/94RS00327        Google Scholar