1. Hsia, R. P., W. M. Zhang. C. W. Domier, and N. C. Luhmann, "A hybrid nonlinear delay line-based broad-band phased antenna array system," IEEE Microwave and Guided Wave Letters, Vol. 8, 182-184, 1998.
doi:10.1109/75.668702 Google Scholar
2. Fernandez, M., E. Delos, X. Melique, S. Arscott, and D. Lippens, "Monolithic coplanar transmission lines loaded by heterostructure barrier varactors for a 60 GHz tripler," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 12, 498-500, 2001.
doi:10.1109/7260.974558 Google Scholar
3. Barker, N. S. and G. M. Rebeiz, "Distributed MEMS truetime delay phase shifters and wide-band switches," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 11, 1881-1890, 1998.
doi:10.1109/22.734503 Google Scholar
4. Borgioli, A., Y. Liu, A. S. Nagra, and R. A. York, "Low-loss distributed MEMS phase shifter," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 1, 7-9, 2000.
doi:10.1109/75.842070 Google Scholar
5. Carman, E., K. Giboney, M. Case, M. Kamegawa, R. Yu, K. Abe, M. J. W. Rodwell, and J. Franklin, "28-39 GHz distributed harmonic generation on a soliton nonlinear transmission line," IEEE Microwave Guided Wave Lett., Vol. 1, 28-39, 1991.
doi:10.1109/75.80703 Google Scholar
6. Edwards, T. C. and M. B. Steer, Foundations of Interconnect and Microstrip Design, third edition, 2000.
7. Yang, F. R., K. P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap structure and its applications for microwave circuits," IEEE Trans. Microwave Theory Tech., Vol. 47, 1999. Google Scholar
8. Joannopoulos, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
9. Peral, E., J. Capmany, and J. MartÃ, "Iterative solution to the Gel' Fand-Levitan-Marchenko coupled equations and application to synthesis of fiber gratings," IEEE Journal of Quantum Electronics, Vol. 32, No. 12, 2078-2084, 1996.
doi:10.1109/3.544753 Google Scholar
10. Katsenelenbaum, B. Z. and L. Mercader, M Pereyaslavets, Vol. 44, M. Sorolla, 1998.
11. Qian, Y.V. Radistic, and T. Itoh, "Simulation and experiment of photonic band-gap structures for microstrip circuits," Proc. Asia- Pacific Microwave Conf., No. 12, 585-588, 1997.
12. Radistic, V., Y. Qian, R. Coccioli, and T. Itoh, "Novel 2- D photonic band gap structures for microstrip lines," IEEE Microwave Guided Wave Lett., Vol. 8, No. 2, 69-71, 1998.
doi:10.1109/75.658644 Google Scholar
13. Kim, T. and C. Seo, "A novel Photonic bandgap structure for low-pass filter of wide stopband," IEEE Microwave Guided Wave Lett., Vol. 10, No. 1, 13-15, 2000.
doi:10.1109/75.842072 Google Scholar
14. Akalin, T., M. A. G. Laso, T. Lopetegi, O. Vanbesien, M. Sorolla, and D. Lippens, "EBG-type microstrip filtres with one and twosided patterns," Microwave and Optical Technology Lett., Vol. 30, No. 7, 69-72, 2001.
doi:10.1002/mop.1223 Google Scholar
15. Lopetegi, T., M. A. G. Laso, M. J. Erro, D. Benito, M. J. Garde, F. Falcone, and M. Sorolla, "Novel photonic bandgap microstrip structures using network topology," Microwave Opt. Tech. Lett., Vol. 25, No. 4, 33-36, 2000.
doi:10.1002/(SICI)1098-2760(20000405)25:1<33::AID-MOP10>3.0.CO;2-T Google Scholar
16. Lopetegi, T., M. A. G. Laso, J. Hernandez, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, "New microstrip wiggly-line filters with spurious passband suppression," IEEE Trans Microwave Theo Tech., Vol. 49, No. 9, 1593-1598, 2001.
doi:10.1109/22.942571 Google Scholar
17. Radisic, V., Y. Qian, and T. Itoh, "Broad-band power amplifier using dielectric photonic bandgap structures," IEEE Microwave Guided Wave Lett., Vol. 8, No. 1, 13-15, 1998.
doi:10.1109/75.650973 Google Scholar
18. Lee, Y-T., J-S. Lim, J-S. Park, D. Ahn, and S. Nam, "A novel phase noise reduction technique in oscillators using defected ground structure," IEEE Microwave Wireless Comp. Lett., Vol. 12, No. 2, 39-41, 2002.
doi:10.1109/7260.982870 Google Scholar
19. Yun, T-Y. and K. Chang, "Uniplanar one-dimensional photonic bandgap structures and resonators," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 3, 549-553, 2001.
doi:10.1109/22.910561 Google Scholar
20. Fu, Y-Q., G. H. Zhang, and N. C. Yuan, "A novel EBG coplanar waveguide," IEEE Microwave and Wireless Components Lett., Vol. 11, No. 11, 447-449, 2001.
doi:10.1109/7260.966037 Google Scholar
21. Sor, J., Y. Qian, and T. Itoh, "Miniature low loss CPW periodic structure for filter applications," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2336-2341, 2001.
doi:10.1109/22.971618 Google Scholar
22. Pozar, D. M., Microwave Engineering, Addison Wesley, 1990.
23. Lopetegi, T., M. A. G. Laso, M. J. Erro, M. Sorolla, and M. Thumm, "Analysis and design of EBG structures for microstrip lines by using the coupled mode theory," IEEE Microwave and Wireless Components Lett., Vol. 12, No. 11, 441-443, 2002.
doi:10.1109/LMWC.2002.805538 Google Scholar
24. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla, "Multiple-frequency tuned photonic bandgap microstrip structures," IEEE Microwave and Guided Wave Lett., Vol. 10, No. 6, 220-222, 2000.
doi:10.1109/75.852421 Google Scholar