Vol. 43
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
An Investigation of Magnetic Antennas for Ground Penetrating Radar
By
, Vol. 43, 257-271, 2003
Abstract
For ground penetrating radar (GPR), smaller antennas would provide considerable practical advantages. Some of which are: portability; ease of use; and higher spatial sampling. A theoretical comparison of the fundamental limits of a small electric field antenna and a small magnetic field antenna shows that the minimum Q constraints are identical. Furthermore, it is shown that only the small magnetic loop antenna can be constructed to approach, arbitrarily closely, the fundamental minimum Q limit. This is achieved with the addition of a high permeability material which reduces energy stored in the magnetic fields. This is of special interest to some GPR applications. For example, applications requiring synthetic aperture data collection would benefit from the increased spatial sampling offered by electrically smaller antennas. Low frequency applications may also benefit, in terms of reduced antenna dimensions, by the use of electrically small antennas. Under these circumstances, a magnetic type antenna should be considered in preference to the typical electric field antenna. Numerical modeling data supports this assertion.
Citation
, "An Investigation of Magnetic Antennas for Ground Penetrating Radar," , Vol. 43, 257-271, 2003.
doi:10.2528/PIER03051301
http://www.jpier.org/PIER/pier.php?paper=0305131
References

1. Chu, L. J., "Physical limitations of omni-directional antennas," Journal of Applied Physics, Vol. 19, 1163-1175, 1948.
doi:10.1063/1.1715038

2. Wheeler, H. A., The radiansphere around a small antenna, Proceedings of the I.R.E., Vol. 47, 1325-1331, 1959.

3. Yarovoy, A. G., P. V. Genderen, and L. P. Ligthart, Ground penetrating impulse radar for landmine detection, Eighth International Conference on Ground Penetrating Radar, 23-26, 2000.

4. Chubinsky, N. and A. Krampuls, Probe of pulse amplitude of electromagnetic field for investigation of GPR antenna performance, Eighth International Conference on Ground Penetrating Radar, 23-29, 2000.

5. De Jongh, R. V., A. G. Yarovoy, I. V. Kaploun, and A. D. Schukin, Design and analysis of new GPR antenna concepts, Seventh International Conference on Ground Penetrating Radar, 27-30, 1998.

6. Sato, M. and T. Tanimoto, A shielded loop array antenna for a directional borehole radar, Fourth International Conference on Ground Penetrating Radar, 8-13, 1992.

7. Ebihara, S., M. Sato, and H. Niitsuma, Estimation of wave polarization in directional borehole radar measurements with the music algorithm, The Third Well Logging Symposium of Japan, 25-25, 1997.

8. Chong, A. A., Complementary GPR antennas and watertank testing, M.Eng.Sc. (Research) Thesis in Department of Computer Science and Electrical Engineering, 2001.

9. Sato, M., T. Ohkubo, and H. Niitsuma, "Cross-polarization borehole radar measurements with a slot antenna," Journal of Applied Geophysics, Vol. 33, 53-61, 1995.
doi:10.1016/0926-9851(94)00019-K

10. Druchinin, S. V., Analysis of characteristics of a slot antenna used in georadar, Seventh International Conference on Ground Penetrating Radar, 27-30, 1998.

11. Noon, D. A. and R. M. Narayanan, "Subsurface remote sensing," Review of RadioScience 1999-2002, 535-552, 2002.

12. Cheng, D. K., Field and Wave Electromagnetics, 2nd Ed., Addison Wesley, 1989.

13. Leat, C. J., "The fundamental limit of small antenna bandwidth: How it affects small GPR antennas," Workshop on Applications of Radio Science, No. 2, 2002.

14. Wheeler, H. A., Fundamental limitations on small antennas, Proceedings of the I.R.E., Vol. 35, 1479-1484, 1947.

15. Wheeler, H. A., "Small antennas," IEEE Transactions on Antennas and Propagation, Vol. AP-23, No. 4, 462-469, 1975.
doi:10.1109/TAP.1975.1141115

16. Goubau, G., Multi-element monopole antenna, Proc. Workshop on Electrically Small Antennas ECOM, 63-67, 1976.

17. Agilent, Agilent High-Frequency Structure Simulator, Agilent High-Frequency Structure Simulator, Version 5.6, Agilent Technologies, 2000.

18. Balanis, C. A., Antenna Theory Analysis and Design, 2nd Ed., John Wiley & Sons, 1997.

19. Ida, I., J. Sato, T. Sekizawa, H. Yoshimura, and K. Ito, "Dependence of the efficiency-bandwidth product on electrical volume of small dielectric loaded antennas," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 6, 821-826, 2002.
doi:10.1109/TAP.2002.1017662