1. Budko, N. V. and P. M. van den Berg, "Estimation of the average contrast of a buried object," Radio Science, Vol. 35, No. 2, 547-555, 2000.
doi:10.1029/1999RS900066
2. Cui, T. J., W. C. Chew, A. A. Aleaddin, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242
3. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An electromagnetic imaging approach using a multi-illumination technique," IEEE Trans. Biomedical Engineering, Vol. 41, 406-409, 1994.
doi:10.1109/10.284973
4. Chiu, C.-C. and C.-P. Huang, "Inverse scattering of dielectric cylinders buried in a half-space," Microwave and Optical Tech. Lett., Vol. 13, No. 2, 96-99, 1996.
doi:10.1002/(SICI)1098-2760(19961005)13:2<96::AID-MOP12>3.0.CO;2-7
5. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress in Electromagnetic Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001
6. Rekanos, I. T., "Inverse scattering of dielectric cylinders by using radial basis function neural networks," Radio Science, Vol. 36, No. 5, 841-849, 2001.
doi:10.1029/2000RS002545
7. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No. 4, 927-931, 2003.
doi:10.1109/TGRS.2003.810928
8. Caorsi, S., D. Anguita, E. Bermani, A. Boni, M. Donelli, and A. Massa, "A comparative study of NN and SVM based electromagnetic inverse scattering approaches to on-line detection of buried objects," Journal of the Applied Computational, Vol. 18, No. 2, 1-11, 2003.
9. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, 2001.
10. Vapnik, V. N., The Nature of Statistical Learning Theory, John Wiley & Sons, 1999.
11. Platt, J., "Fast training of support vector machines using sequential minimal optimization," Advances in Kernel Methods — Support Vector Learning, 1999.
12. Mattera, D., F. Palmieri, and S. Haykin, "An explicit algorithm for training support vector machines," IEEE Signal Processing Letters, Vol. 6, No. 9, 243-245, 1999.
doi:10.1109/97.782071