Vol. 48
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-22
A Multi-Source Strategy Based on a Learning-by-Examples Technique for Buried Object Detection
By
, Vol. 48, 185-200, 2004
Abstract
In the framework of buried object detection and subsurface sensing, some of the main difficulties in the reconstruction process are certainly due to the aspect-limited nature of available measurement data and to the requirement of an on-line reconstruction. To limit these problems, a multi-source (MS) learning-by-example (LBE) technique is proposed in this paper. In order to fully exploit the more attractive features of the MS strategy, the proposed approach is based on a support vector machine (SVM). The effectiveness of the MS-LBE technique is evaluated by comparing the achieved results with those obtained by means of a previously developed single-source (SS) SVMbased procedure for an ideal as well as a noisy environment.
Citation
Emanuela Bermani, Andrea Boni, Salvatore Caorsi, Massimo Donelli, and Andrea Massa, "A Multi-Source Strategy Based on a Learning-by-Examples Technique for Buried Object Detection," , Vol. 48, 185-200, 2004.
doi:10.2528/PIER03110701
References

1. Budko, N. V. and P. M. van den Berg, "Estimation of the average contrast of a buried object," Radio Science, Vol. 35, No. 2, 547-555, 2000.
doi:10.1029/1999RS900066

2. Cui, T. J., W. C. Chew, A. A. Aleaddin, and S. Chen, "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-346, 2001.
doi:10.1109/36.905242

3. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An electromagnetic imaging approach using a multi-illumination technique," IEEE Trans. Biomedical Engineering, Vol. 41, 406-409, 1994.
doi:10.1109/10.284973

4. Chiu, C.-C. and C.-P. Huang, "Inverse scattering of dielectric cylinders buried in a half-space," Microwave and Optical Tech. Lett., Vol. 13, No. 2, 96-99, 1996.
doi:10.1002/(SICI)1098-2760(19961005)13:2<96::AID-MOP12>3.0.CO;2-7

5. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress in Electromagnetic Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

6. Rekanos, I. T., "Inverse scattering of dielectric cylinders by using radial basis function neural networks," Radio Science, Vol. 36, No. 5, 841-849, 2001.
doi:10.1029/2000RS002545

7. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," IEEE Trans. on Geoscience and Remote Sensing, Vol. 41, No. 4, 927-931, 2003.
doi:10.1109/TGRS.2003.810928

8. Caorsi, S., D. Anguita, E. Bermani, A. Boni, M. Donelli, and A. Massa, "A comparative study of NN and SVM based electromagnetic inverse scattering approaches to on-line detection of buried objects," Journal of the Applied Computational, Vol. 18, No. 2, 1-11, 2003.

9. Christodoulou, C. and M. Georgiopoulos, Applications of Neural Networks in Electromagnetics, Artech House, 2001.

10. Vapnik, V. N., The Nature of Statistical Learning Theory, John Wiley & Sons, 1999.

11. Platt, J., "Fast training of support vector machines using sequential minimal optimization," Advances in Kernel Methods — Support Vector Learning, 1999.

12. Mattera, D., F. Palmieri, and S. Haykin, "An explicit algorithm for training support vector machines," IEEE Signal Processing Letters, Vol. 6, No. 9, 243-245, 1999.
doi:10.1109/97.782071