1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics USPEKI, Vol. 10, 1968. Google Scholar
2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 2000. Google Scholar
4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed material," Phys. Rev. Lett., Vol. 85, 2000. Google Scholar
5. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW mediamedia with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, No. 2, 129-133, 2001.
doi:10.1002/mop.1378 Google Scholar
6. Caloz, C., C.-C. Chang, and T. Itoh, "Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations," Journal of Applied Physics, Vol. 90, 5483-5486, 2001.
doi:10.1063/1.1408261 Google Scholar
7. Ruppin, R., "Extinction properties of a sphere with negative permittivity and permeability," Solid State Communications, Vol. 116, 411-415, 2000.
doi:10.1016/S0038-1098(00)00362-8 Google Scholar
8. Ziolkowski, R. W., "Superluminal transmission of information through an electromagnetic metamaterial," Physical Review E, Vol. 63, 046604, 2001.
doi:10.1103/PhysRevE.63.046604 Google Scholar
9. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, 489-491, 2001.
doi:10.1063/1.1343489 Google Scholar
10. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review E, Vol. 64, 056625, 2001.
doi:10.1103/PhysRevE.64.056625 Google Scholar
11. Sarychev, K., V. M. Shalaev, and V. A. Podolskiy, "Plasmon modes in metal nanowires and left-handed materials," Journal of Nonlinear Optical Physics & Materials, Vol. 11, No. 1, 65-74, 2002.
doi:10.1142/S0218863502000833 Google Scholar
12. Pendry, J. B. and S. Anantha Ramakrishna, "Near-field lenses in two dimensions," Journal of Physics: Condensed Matter, Vol. 14, 8463-8479, 2002.
doi:10.1088/0953-8984/14/36/306 Google Scholar
13. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive Index media using periodically L-C loaded transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
14. Pacheco J., Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, "Power propagation in homogeneous isotropic frequency dispersive left-handed media," Physical Review Letters, Vol. 89, 257401, 2002.
doi:10.1103/PhysRevLett.89.257401 Google Scholar
15. Kong, J. A., B.-I. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 33, No. 2, 137-139, 2002.
doi:10.1002/mop.10255 Google Scholar
16. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576 Google Scholar
17. Grbic, A. and G. V. Eleftheriades, "Growing evanescent waves in negative-refractive-index transmission-line media," Applied Physics Letters, Vol. 82, 1815-1817, 2003.
doi:10.1063/1.1561167 Google Scholar
18. Smith, D. R., D. Schurig, M. Rosenbluth, S. Schultz, S. Anantha Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Applied Physics Letters, 1506-1508, 2003.
doi:10.1063/1.1554779 Google Scholar
19. Loschialpo, P. F., D. L. Smith, D. W. Forester, F. J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E, Vol. 67, 025602, 2003.
doi:10.1103/PhysRevE.67.025602 Google Scholar
20. Alu, A. and N. Engheta, "Circuit equivalence of 'growing exponential' in Pendry's lens," USNC/CNC/URSI North American Radio Science Meeting Digest, 22-27, 2003. Google Scholar
21. Feynman, R., R. B. Leighton, and M. L. Sands, The Feynman Lectures on Physics, Vol. I, Vol. I, 1965.
22. Lee, T. D. and C. N. Yang, "Question of parity conservation in weak interaction," Phys. Rev., Vol. 104, No. 1, 254-257, 1956.
doi:10.1103/PhysRev.104.254 Google Scholar
23. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1990.
24. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1995.
25. Banõs, Jr. and A., Dipole Radiation in the Presence of a Conducting Half-Space, Pergamom Press, 1966.